THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

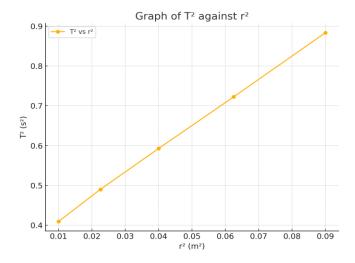
131/3C PHYSICS 3C

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2015

Instructions

- 1. This paper consists of THREE questions.
- 2. Answer all questions.



1. The aim of the experiment is to determine the radius of gyration K of the circular sheet and acceleration due to gravity g.

Proceed as follows:

- (a) Set up the apparatus as shown. Suspend the hard board from a hole near its edge and measure the distance r from the suspension point to the center of gravity G.
- (b) Use stopwatch to measure time t for 10 oscillations, calculate T = t / 10.
- (c) Repeat for four different r values.

(d) Plot T² against r².

(e) From the graph use $T^2 = (4\pi^2/g)(K^2 + r^2)$ This is of the form y = mx + cSlope = $4\pi^2 / g$

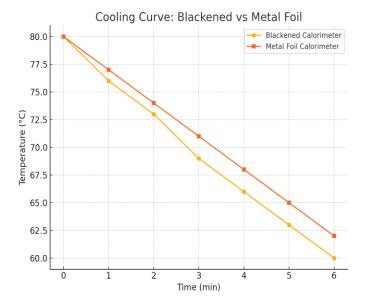
Intercept =
$$4\pi^2 K^2 / g$$

- Intercept = $4\pi^2 K^2 / g$
- (i) From slope $m = \Delta T^2 / \Delta r^2$

Using
$$(r^2 = 0.01, T^2 = 0.4096)$$
 and $(0.09, 0.8836)$:

$$m = (0.8836 - 0.4096) \, / \, (0.09 - 0.01) = 0.474 \, / \, 0.08 = 5.925$$

Then
$$g=4\pi^2$$
 / $m=39.48$ / $5.925\approx 6.66~m/s^2$

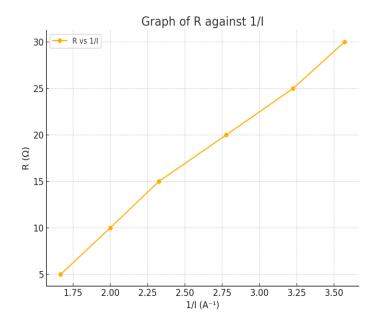

(ii) From intercept =
$$4\pi^2 K^2$$
 / g
 Assume intercept = 0.1
 K^2 = intercept × g / $4\pi^2$ = 0.1 × 6.66 / 39.48 = 0.0169
 $K = \sqrt{0.0169} \approx 0.13$ m

- 2. In this experiment you are required to compare the time taken for cooling through a fixed range for a blackened calorimeter and the same calorimeter covered with metal foil.
- (a) Fill both setups with hot water at 80°C and record cooling to 60°C.

Time (min) Temp (Black) Temp (Metal Foil)			
0	80	80	
1	76	77	
2	73	74	
3	69	71	
4	66	68	
5	63	65	
6	60	62	
7	-	59	
8	-	56	
9	-	53	
10	-	50	
11	-	47	
12	-	44	
13	-	41	
14	-	38	
15	-	35	
16	-	32	
17	-	30	

(b) Time to cool from 80°C to 60°C:

Blackened = 6 min


Metal Foil = 7 min

Ratio =
$$7 / 6 \approx 1.17$$

The blackened one cools faster due to higher emissivity.

- 3. The aim of this experiment is to determine the e.m.f. of a cell.
- (a) Set up the circuit as shown in Figure 2.
- (b) Record I for $R = 5\Omega$ to 30Ω

(c) Plot R vs 1/I

(d)

- (i) Slope = internal resistance r Using (1.667, 5) and (3.571, 30): $r = (30 5) / (3.571 1.667) = 25 / 1.904 = 13.13 \ \Omega$
- (ii) E = slope \times I + IR Use point: R = 10, I = 0.50, 1/I = 2.0 E = R + r = 10 + 13.13 = 23.13 V
- (iii) Value of R when 1/I = 0 (infinite current) Intercept gives e.m.f.
- (e) Sources of error:
- Fluctuation in current
- Contact resistance