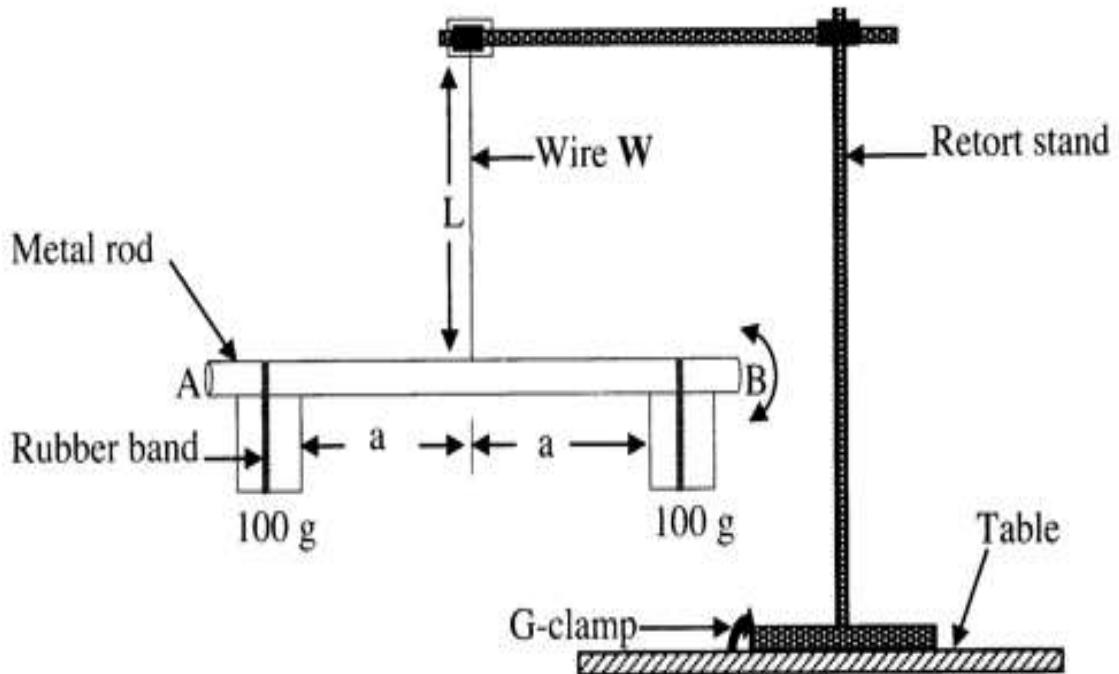


THE UNITED REPUBLIC OF TANZANIA
NATIONAL EXAMINATIONS COUNCIL
ADVANCED CERTIFICATE OF SECONDARY EDUCATION
EXAMINATION
PHYSICS 3C
(PRACTICAL C)

(For Both School and Private Candidates)

Duration: 3 Hours


ANSWERS

Year: 2025

Instructions

1. This paper consists of seven questions.
2. Answer a total of **five (5)** questions. Question number **one (1)** is compulsory.
3. Each question carries **twenty (20)** marks.
4. All writing must be in **black** or **blue** ink except for drawings which must be in pencil.
5. Communication devices and any unauthorised materials are **not** allowed in the examination room.
6. Write your **Examination Number** on every page of your answer booklet(s).

1. You have been provided with wire **W**. Perform an experiment to determine the shear modulus of the wire given. Proceed as follows:
 - (a) Arrange the apparatus as shown in Diagram 11.

- (b) Mount a metal rod AB at its centre point, then adjust the length, L of wire, W about 50 cm so that when the metal rod AB is twisted through A at a small angle in the horizontal plane about its centre point, it executes oscillations.
- (c) Fasten the two masses firmly on the rod by using a rubber band, at equal distance in centimetres measured from the suspended wire, W to the mid-point of each mass.
- (d) Twist the metal rod and record the time, t for 10 oscillations of the rod when the distance from the wire to the mass, $a=3$ cm. Hence obtain its periodic time T

(e) Repeat the procedure outlined in 1 (d) for the values of $a = 5 \text{ cm}, 7 \text{ cm}, 9 \text{ cm}$ and 11 cm .

Questions:

$$\begin{aligned} \text{(iv) Slope} &= (986.10 - 692) \text{ cm}^2 / (607.38 - 418) \text{ s}^2 \\ &= 1.56 \text{ cm}^2/\text{s}^2 \\ &= 1.56 \times 10^{-2} \text{ cm}^2/\text{s}^2 \end{aligned}$$

$$\begin{aligned} \text{(v) Slope} &= \underline{\eta \times r^4} \\ &= 8 \times \pi \times L \end{aligned}$$

$$\eta = \text{slope} \times 8\pi L r^4$$

$$r = d/2$$

$$= 0.320 \text{ mm}$$

$$2$$

$$= 0.016 \text{ mm}$$

$$= 0.016 \times 10^{-3} \text{ m}$$

$$\begin{aligned} &= \underline{1.56 \times 10^{-2} \text{ m}^2 \text{ s}^{-2} \times 8 \times 3.14 \times 0.5} \\ &\quad (0.016 \times 10^{-3})^4 \end{aligned}$$

$$= 2.98 \times 10^{18} \text{ N/m}^2$$

1(iii)

THE GRAPH OF $100^2(\text{cm}^2)$ AGAINST $T^2(\text{s}^2)$

Vertical scale : 1cm represents 86.5

 $100^2(\text{cm}^2)$

Horizontal scale : 1cm represents 57.3

1211

1038

865

692

519

346

173

114.6 229.2 343.8 458.4 573 687.6

 $T^2(\text{s}^2)$ $\Delta T^2(\text{s}^2)$ $(418, 692)$ $(601.38, 986.1)$ 1700^2 cm^2

2. You are provided with hot water of about 70°C , a copper calorimeter and a thermometer. You are required to determine the effect of the mass of an object on the cooling process. Proceed as follows:

- Measure and record the mass of the empty calorimeter.
- Half filled the calorimeter with hot water of about 70°C
- Observe and record the temperature of water at an interval of 2 minutes as water cools from 60°C to 45°C .
- Weigh the calorimeter that is half filled with hot water.
- Repeat the procedures in 2 (c) and (d) when the calorimeter is $2/3$ full of hot water.

Questions.

- What are the masses of water obtained in 2 (d) and (e)?
- Tabulate the results obtained in 2 (c) and (e).

2 (ii) Table of results
when 1/2 filled with water

time (min)	temperature ($^{\circ}\text{C}$)
0	60
2	57
4	54
6	51
8	49
10	48
12	45

when $2/3$ filled with water

time (min)	temperature ($^{\circ}\text{C}$)
------------	------------------------------------

0	60
2	58
4	56
6	54
8	52
10	50
12	48
14	46
16	45

(iv) Ratio of time taken to cool from

(a) $60^{\circ}\text{C} - 50^{\circ}\text{C}$

(b) $60^{\circ}\text{C} - 45^{\circ}\text{C}$

when half filled with water $t_1 = f_1$

(a) $60^{\circ}\text{C} - 50^{\circ}\text{C}$

Half filled water (t_1) = 7 minutes

$2/3$ filled water (t_2) = 10 minutes

Ratio = t_1 / t_2

= $7 / 10$

= 0.7

Ratio (R_1) = 0.7

(b) $60^{\circ}\text{C} - 45^{\circ}\text{C}$

Half filled water (t_1) = 12 minutes

$2/3$ filled water (t_2) = 16 minutes

Ratio (R_2) = $12 / 16$

= 0.75

\therefore Ratio (R_2) = 0.75

(vi) Thermal capacities of water

from

(i) when half filled with water

Thermal capacity = $M_w C_w + M_c C_c$

$M_w = 52.88 \text{ g} = 0.05288 \text{ kg}$

$C_w = 4200 \text{ J kg}^{-1} \text{ K}^{-1}$

$M_c = 36.02 \text{ g} = 0.03602 \text{ kg}$

$C_c = 420 \text{ J kg}^{-1} \text{ K}^{-1}$

Then

$$Q = 0.05288 \times 4200 + 0.03602 \times 420$$

$$Q = 243.096 \text{ J K}^{-1} + 15.1284 \text{ J K}^{-1}$$

$$Q = 258.2244 \text{ J K}^{-1}$$

∴ Thermal capacity of water when calorimeter is half filled with water =
 $258.2244 \text{ J K}^{-1}$

(ii) when 2/3 filled with water

from

Thermal capacity = $M_c C_c + M_w C_w$

$M_w = 86.23 \text{ g}$

2 (vi)

$$Q = 0.03602 \times 420 + 0.08632 \times 4200$$

$$Q = 15.128 + 362.166$$

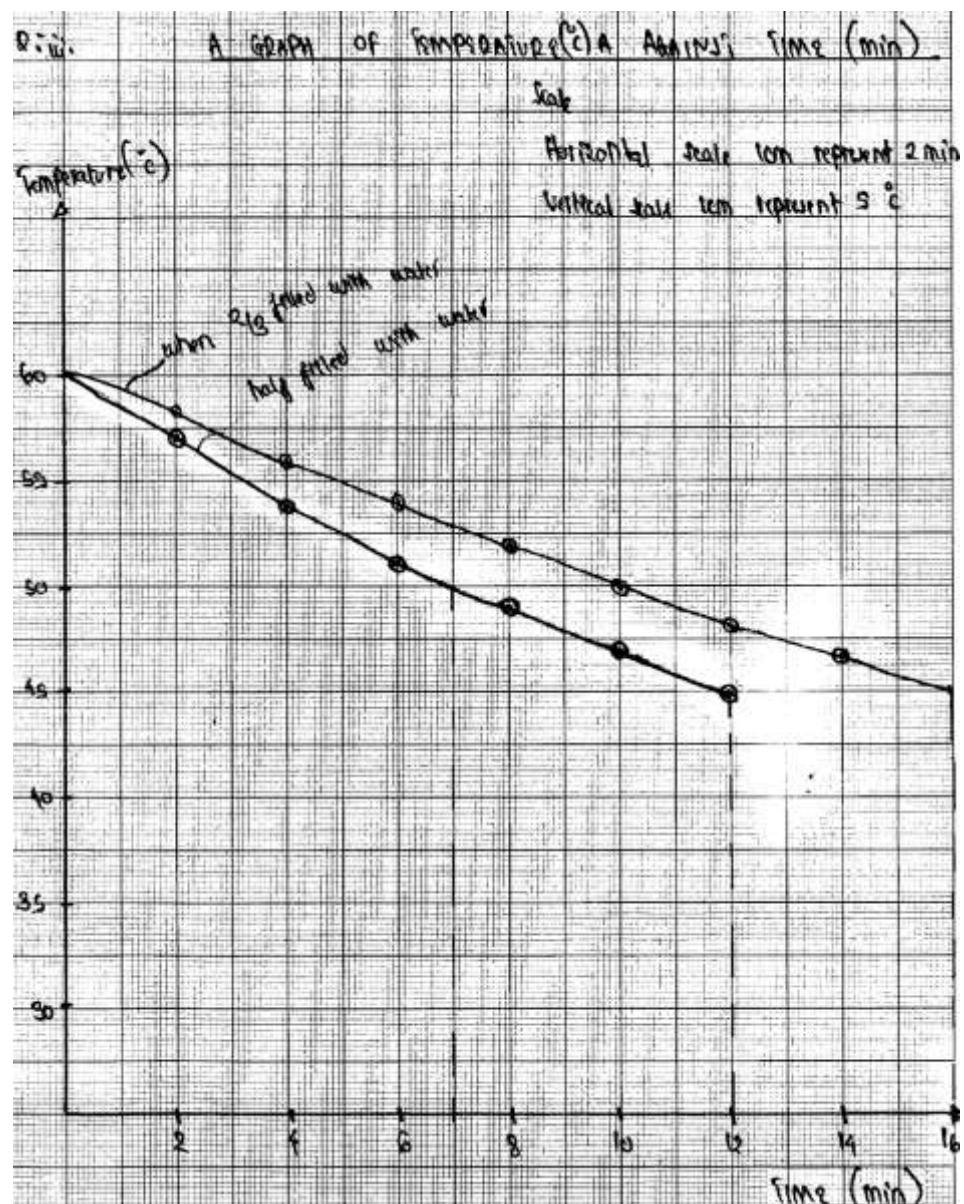
$$Q = 377.294 \text{ J K}^{-1}$$

∴ Thermal capacity when calorimeter is filled with 2/3 water = 377.294 J K^{-1}

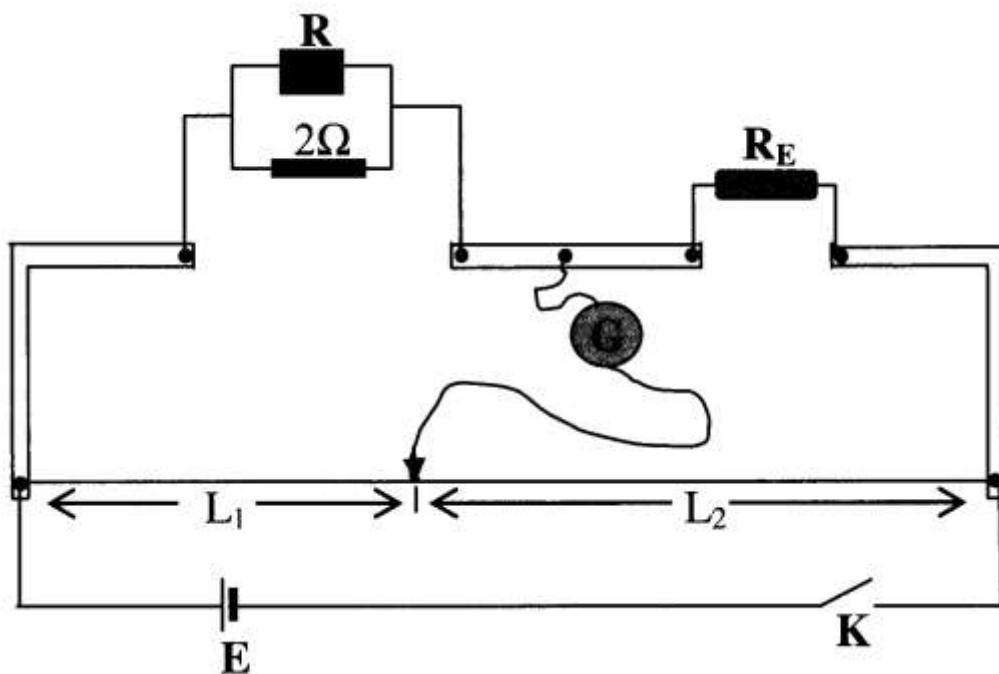
vii) Ratio of thermal capacities obtained

from

$$\text{Ratio} = Q_1 / Q_2$$


$$\text{Ratio} = 258.224 \text{ J K}^{-1}$$

$$377.294 \text{ J K}^{-1}$$


$$\text{Ratio} = 0.7$$

$$\therefore \text{Ratio of thermal capacities} = 0.7$$

viii) Ratio obtained in 2(iv) and (v) are nearly the same. Hence, it implies that water in the calorimeter filled 2/3 takes long time to cool as compared to that filled with 1/2.

3. You are provided with a meter bridge with its accessories, resistance box (1Ω - 10Ω) labelled **R**, 2Ω standard resistor, galvanometer labelled **G**, dry cell soldered both ends labelled **E**, key **K**, connecting wires and hard paper wrapped with wires of resistance 6Ω labelled **RE**. Referring to the information provided, perform the experiment in order to determine the number of wires that the resistor, **RE** contains if each wire has a resistance of 6Ω as follows in Diagram.

(a) Starting with $R = 10\Omega$, close the key, **K** and determine the length, L_1 where by, the galvanometer reads 0 and hence determine the corresponding value of length, L_2 .

(b) Repeat the procedure ion 3(a) for values of $R=5\Omega$, 3Ω , 2Ω , and 1Ω .

Questions

3 (i) Table of Results.

$R (\Omega)$	$1/R (\Omega^{-1})$	$L_1 (\text{cm})$	$L_2 (\text{cm})$	L_2/L_1
10	0.1	45.8	54.2	1.18
5	0.2	42.2	57.8	1.37
3	0.33	37.3	62.7	1.68
2	0.5	33.9	66.1	1.95
1	1	24.7	75.3	3.05

(ii) Graph.

$$\text{Slope} = \Delta y / \Delta x = \Delta(1/R (\Omega^{-1})) / \Delta(L_2/L_1)$$

$$\text{Slope} = (0.6 - 0.2) \Omega^{-1} \\ (2.16 - 1.37)$$

$$\text{Slope} = 0.506 \Omega^{-1}$$

∴ The slope of the graph is $0.506 \Omega^{-1}$

(iii) R and 2Ω are in parallel so the equivalent resistance will be

$$R_t = 2R / (2 + R)$$

3 (iii)

$$\frac{RT}{L_1} = \frac{RE}{L_2}$$

$$RT / RE = L_1 / L_2$$

$$2R / (2 + R) : RE = \frac{2R}{(2 + R) RE}$$

$$\frac{2R}{(2+R)RE} = \frac{L_1}{L_2}$$

$$\frac{(2+R)RE}{2R} = \frac{L_2}{L_1}$$

$$\frac{2}{2R} + \frac{R}{2R} = \frac{L_2}{L_1} + \frac{1}{RE}$$

$$\frac{1}{R} + \frac{1}{2} = \frac{L_2}{L_1} + \frac{1}{RE}$$

$$\frac{1}{R} = \frac{1}{RE} + \frac{L_2}{L_1} - \frac{1}{2}$$

$$y = mx - c$$

(iv) from slope = 1 / RE

$$\text{slope} = 0.51 \Omega^{-1}$$

$$0.51 \Omega^{-1} = 1 / RE$$

$$RE = 1 / 0.51 \Omega^{-1} = 2 \Omega$$