

THE UNITED REPUBLIC OF TANZANIA
NATIONAL EXAMINATIONS COUNCIL
ADVANCED CERTIFICATE OF SECONDARY EDUCATION
EXAMINATIONS

131/3C

PHYSICS 3C
(PRACTICAL C)

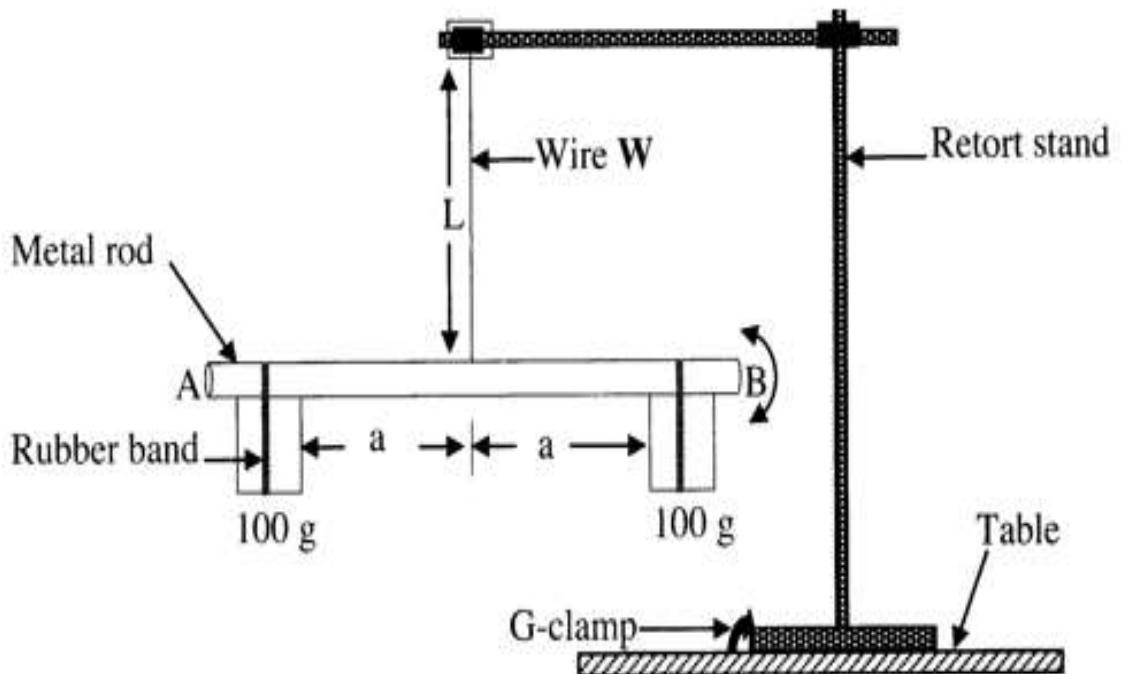
(For Both School and Private Candidates)

Duration: 3:20 Hours

Year: 2025

Instructions

1. This paper consists of **three (3)** questions.
2. Answer **all** questions.
3. Question **one (1)** carries **twenty (20)** marks and the other **two (2)** carry **fifteen (15)** marks each.
4. Mathematics tables and non-programmable calculators may be used.
5. All writing must be in **black** or **blue** ink except for drawings which must be in pencil
6. Communication devices and any unauthorised materials are **not** allowed in the examination room.
7. Write your **Examination Number** on every page of your answer booklet(s).


The following information may be useful:

$\text{Pie, } \pi = 3.14$

Specific heat capacity of water = $4.2 \times 10^3 \text{ Jkg}^{-1}\text{K}^{-1}$

1. You have been provided with wire **W**. Perform an experiment to determine the shear modulus of the wire given. Proceed as follows:
 - (a) Arrange the apparatus as shown in Diagram 11.

- (b) Mount a metal rod AB at its centre point, then adjust the length, L of wire, W about 50 cm so that when the metal rod AB is twisted through A at a small angle in the horizontal plane about its centre point, it executes oscillations.
 - (c) Fasten the two masses firmly on the rod by using a rubber band, at equal distance in centimetres measured from the suspended wire, W to the mid-point of each mass.
 - (d) Twist the metal rod and record the time, t for 10 oscillations of the rod when the distance from the wire to the mass, $a=3$ cm. Hence obtain its periodic time T
 - (e) Repeat the procedure outlined in 1 (d) for the values of $a = 5$ cm, 7 cm, 9 cm and 11 cm.

Questions:

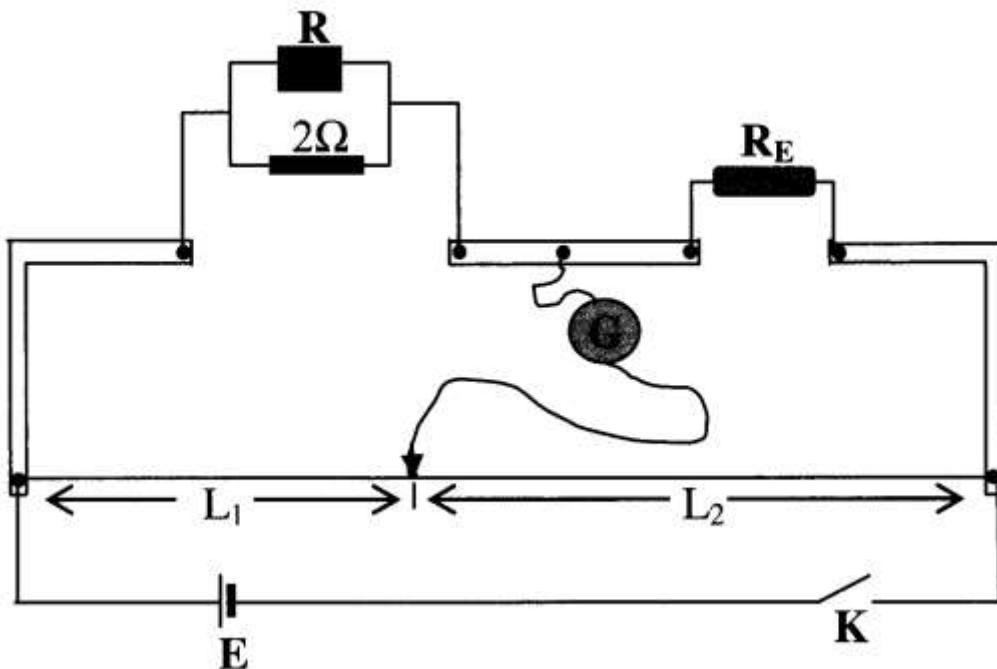
- (i) Tabulate your results, including the values of t , T , T^2 , a , a^2 and $10a^2$.
- (ii) Read and record the diameter of the wire W hence find its radius.
- (iii) Plot a graph of $10a^2$ against T^2 .
- (iv) Determine the slope of your graph.
- (v) Evaluate the shear modulus η of the wire W , from the equation,

$$\eta = \frac{80a^2\pi L}{r^4 T^2}$$

2. You are provided with hot water of about $70^\circ C$, a copper calorimeter and a thermometer. You are required to determine the effect of the mass of an object on the cooling process. Proceed as follows:
 - (a) Measure and record the mass of the empty calorimeter.
 - (b) Half filled the calorimeter with hot water of about $70^\circ C$
 - (c) Observe and record the temperature of water at an interval of 2 minutes as water cools from $60^\circ C$ to $45^\circ C$.
 - (d) Weigh the calorimeter that is half filled with hot water.
 - (e) Repeat the procedures in 2 (c) and (d) when the calorimeter is $2/3$ full of hot water.

Questions.

- (i) What are the masses of water obtained in 2 (d) and (e)?
- (ii) Tabulate the results obtained in 2 (c) and (e).
- (iii) Plot the cooling curves of two setting in the same plane of axis.


(iv) From the graph in 2 (iii), determine the ratio between the time taken to cool half full of water to that of two third full of water at the following intervals; $60^0\text{C} - 50^0\text{C}$ and $60^0\text{C} - 45^0\text{C}$.

(v) Using the data obtained in 2 (c) and (e), determine the thermal capacities of water.

(vi) Determine the ratios of thermal capacities obtained in 2 (v).

(vii) How do the ratios obtained in 2 (iv) and (vi) relate?

3. You are provided with a meter bridge with its accessories, resistance box (1Ω - 10Ω) labelled **R**, 2Ω standard resistor, galvanometer labelled **G**, dry cell soldered both ends labelled **E**, key **K**, connecting wires and hard paper wrapped with wires of resistance 6Ω labelled **RE**. Referring to the information provided, perform the experiment in order to determine the number of wires that the resistor, **RE** contains if each wire has a resistance of 6Ω as follows in Diagram.

(a) Starting with $R = 10 \Omega$, close the key, K and determine the length, L_1 where by, the galvanometer reads 0 and hence determine the corresponding value of length, L_2 .

(b) Repeat the procedure ion 3(a) for values of $R=5 \Omega, 3 \Omega, 2 \Omega$, and 1Ω .

Questions

- (i) Prepare a table of results including of values of R , $\frac{1}{R}$, L_1 , L_2 and of $\frac{L_2}{L_1}$
- (ii) Plot a graph of $\frac{1}{R}$ against $\frac{L_2}{L_1}$ and determine its slope.
- (iii) Develop the relation that governs this experiment.
- (iv) Use your results in 3(ii) and (iii) to determine the number of wires that the resistor, R_E contains if each wire has a resistance of 6Ω .