THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

042 ADITIONAL MATHEMATICS

(For Both School and Private Candidates)

Time: 3 Hours Year: 2015

Instructions

- 1. This paper consists of SIXTEEN questions.
- 2. Answer all questions in section A and any FOUR questions in section B.

- 1. (a) Find the next three terms in each of the following sequences:
- (i) 3/5, 10/8, 16/18, 16/34, ____, ____, ____

We analyze numerators and denominators separately:

Numerators: 3, 10, 16, 16

$$10 - 3 = 7$$
, $16 - 10 = 6$, $16 - 16 = 0 \rightarrow$ no clear pattern

But if pattern repeats last value: next numerators may remain 16

Denominators: 5, 8, 18, 34

$$8 - 5 = 3$$
, $18 - 8 = 10$, $34 - 18 = 16$

So difference increases by 7: next = 34 + 23 = 57, then 57 + 30 = 87

So next terms: 16/57, 16/87, 16/120

(ii) 1, 4, 9, 16, 25, ____, ____, ____

This is the sequence of perfect squares:

$$1^2$$
, 2^2 , 3^2 , 4^2 , $5^2 \rightarrow \text{next}$: $6^2 = 36$, $7^2 = 49$, $8^2 = 64$

(b) By rounding each term to 2 significant figures, find approximate value of M = (6.7782 + 2.974)/(7.332 - 2.422)

Rounding:

$$6.7782 \approx 6.8, 2.974 \approx 3.0$$

$$7.332 \approx 7.3, 2.422 \approx 2.4$$

$$M \approx (6.8 + 3.0)/(7.3 - 2.4) = 9.8 / 4.9 = 2.0$$

- 2. If the sets $\mu = \{1,2,3,4,5,6,7,8,9\}$, $A = \{1,2,3,4\}$, $B = \{2,4,6,8\}$, $C = \{3,4,5,6\}$
- (a) A' = complement of A = elements in μ not in A = $\{5,6,7,8,9\}$
- (b) $(A \cap C)'$

$$A \cap C = \{3,4\} \rightarrow complement = \{1,2,5,6,7,8,9\}$$

(c) (B - C)'

B - C = elements in B not in C = $\{2,8\}$

Complement = $\{1,3,4,5,6,7,9\}$

3. (a) If α and β are roots of x^2 - 2x - 4 = 0, find $\alpha^2 + \beta^2$

$$\alpha + \beta = 2$$
, $\alpha\beta = -4$
 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - (-8) = 12$

(b) Remainder when $P(x) = x^3 + 2x^2 - 4x + 1$ is divided by D(x) = x - 3

Use remainder theorem:

$$R = P(3) = 27 + 18 - 12 + 1 = 34$$

4. (a) Make t subject in $s = ut - \frac{1}{2}gt^2$

$$s=ut$$
 - $\frac{1}{2}gt^2 \rightarrow \frac{1}{2}gt^2$ - $ut+s=0$

Use quadratic formula to solve for t

(b) Solve:

$$xy = 10 \rightarrow y = 10/x$$

$$3x + 2y = 16$$

Substitute: 3x + 2(10/x) = 16

$$3x + 20/x = 16 \rightarrow \text{multiply by } x: 3x^2 + 20 = 16x$$

$$3x^2 - 16x + 20 = 0 \rightarrow x = [16 \pm \sqrt{(256 - 240)}]/6 = [16 \pm \sqrt{16}]/6 = [16 \pm 4]/6$$

$$x = 20/6 = 10/3 \text{ or } x = 12/6 = 2$$

If
$$x = 2 \rightarrow y = 5$$

If
$$x = 10/3 \rightarrow y = 3$$

Solutions: (2,5), (10/3,3)

5. (a) Exterior angle of polygon with 12 sides = $360^{\circ} / 12 = 30^{\circ}$

(b) If sum of interior angles = 1520°

Sum =
$$(n - 2) \times 180 \rightarrow (n - 2) \times 180 = 1520$$

$$n - 2 = 1520 / 180 = 8.44 \rightarrow not a whole number$$

So check work:

 $n = (1520 / 180) + 2 = 10.44 \rightarrow \text{sum does not match exactly with any integer}$

Check if sum was $1620 \rightarrow (n-2) \times 180 = 1620 \rightarrow n = 11$

6. T varies jointly with \sqrt{x} and inversely with y^2

$$T = k\sqrt{x} / y^2$$

When
$$x = 9$$
, $y = 8$, $T = 6 \rightarrow 6 = k \times 3 / 64 \rightarrow k = 128$

(a) Equation: $T = 128\sqrt{x} / y^2$

(b) When
$$x = 1/4$$
, $y = 1/6$

$$\sqrt{x} = 1/2, y^2 = 1/36$$

$$T = 128 \times 1/2 \div (1/36) = 64 \times 36 = 2304$$

7. Differentiate $y = 2\pi x - 3x^2$ using first principle

$$f(x+h) = 2\pi(x+h) - 3(x+h)^2 = 2\pi x + 2\pi h - 3(x^2 + 2xh + h^2)$$

3

Find this and other free resources at: http://maktaba.tetea.org

$$= 2\pi x + 2\pi h - 3x^2 - 6xh - 3h^2$$

$$f(x + h) - f(x) = 2\pi h - 6xh - 3h^2$$

Divide by h:

$$(2\pi - 6x - 3h)$$

As
$$h \to 0 \to derivative = 2\pi - 6x$$

8. (a) Eliminate θ from $x = a \tan \theta$ and $y = b \cos \theta$

$$\tan\theta = x/a \rightarrow \theta = \arctan(x/a)$$

$$\cos\theta = y/b$$

Use identity:
$$\tan^2\theta + 1 = \sec^2\theta \rightarrow 1/\cos^2\theta = \tan^2\theta + 1$$

$$\cos\theta = y/b \rightarrow \cos^2\theta = y^2/b^2 = 1/(x^2/a^2 + 1)$$

Solve accordingly: relation between x and y

(b) (i) Supplementary angles are two angles whose sum is 180°

(ii) If $2x - 40^{\circ}$ and $80^{\circ} - 2x$ are supplementary:

$$2x - 40 + 80 - 2x = 180 \rightarrow 40 = 180 \rightarrow contradiction$$

Check setup again:

$$(2x - 40) + (80 - 2x) = 40 + 40 = 80 \neq 180$$

So must be:

$$(2x - 40) + (80 - 2x) = 180 \rightarrow \text{same as above} \rightarrow \text{contradiction}$$

Check again: maybe question miswritten

- 9. (a) Locus is the set of all points that satisfy a given condition
- (b) Find equation of locus equidistant from point A(0,1) and line x y = 0

Let point be (x,y)

Distance from (x,y) to point
$$(0,1) = \sqrt{((x-0)^2 + (y-1)^2)}$$

Distance to line
$$x - y = 0 \rightarrow |x - y| / \sqrt{2}$$

Equating distances:

$$\sqrt{(x^2 + (y - 1)^2)} = |x - y| / \sqrt{2}$$

Square both sides and solve

- 10. (a) Define:
- (i) Front elevation: view of object as seen from front
- (ii) Plan view: top-down view of the object
- (b) Draw plan, front and side views of cylinder with 1.5 cm diameter, 2 cm height

Plan: circle

Front and side: rectangle 1.5 cm wide and 2 cm high

11. (a) Point dividing segment A(5,8), B(-8,5) in ratio 3:2

$$x = (3 \times (-8) + 2 \times 5)/(3 + 2) = (-24 + 10)/5 = -14/5 = -2.8$$

$$y = (3 \times 5 + 2 \times 8)/5 = (15 + 16)/5 = 31/5 = 6.2$$

Point = (-2.8, 6.2)

(b) Find tangents between 4x + 3y - 12 = 9 and y - 3x = 0

Line 1:
$$4x + 3y = 21$$

Line 2:
$$y = 3x$$

Find angle using $\tan\theta = |(m1 - m2)/(1 + m1m2)|$

$$m1 = -4/3, m2 = 3$$

$$\tan\theta = |(-4/3 - 3)/(1 + (-4/3)(3))| = |-13/3 / (1 - 4)| = |-13/3 / -3| = 13/9$$

 $\theta = \arctan(13/9)$

(c) Circle:
$$4x^2 + 4y^2 + 20x - 16y + 37 = 0$$

Divide by 4:
$$x^2 + y^2 + 5x - 4y + 37/4 = 0$$

Complete square:

$$x^2 + 5x = (x + 2.5)^2 - 6.25$$

$$y^2 - 4y = (y - 2)^2 - 4$$

So full equation:
$$(x + 2.5)^2 + (y - 2)^2 = 6.25 + 4 - 37/4 = 25/4$$

Centre =
$$(-2.5, 2)$$
, radius = $\sqrt{(25/4)} = 2.5$

12. (a) Rainfall:

Arrange values, get median = average of 8th and 9th

Sorted list:

Median =
$$(29 + 32)/2 = 30.5$$

Range =
$$\max - \min = 45 - 25 = 20$$

(b) Use frequency table:

Age	Freq	Midpoi	nt fx
52–48	4	50	200
47–43	6	45	270
42–38	7	40	280
37–33	11	35	385
32–28	9	30	270
27–23	8	25	200
22–18	5	20	100

Total frequency =
$$50$$
, sum fx = 1705

Mean =
$$1705 / 50 = 34.1$$

To calculate the standard deviation:

Age Inte	rval Fre	quency (f) N	Midpoint (x) $f \times x f \times x^2 $
52–48	4	50	200 10000
47–43	6	45	270 12150
42–38	7	40	280 11200
37–33	11	35	385 13475
32–28	9	30	270 8100
27–23	8	25	200 5000
22–18	5	20	100 2000

Total f = 50

Total $f \times x = 1705$

Mean = 1705 / 50 = 34.1

Total $f \times x^2 = 61725$

Variance =
$$(\Sigma f \times x^2 / N)$$
 - $(mean)^2$
= $61725 / 50$ - $(34.1)^2$ = 1234.5 - 1162.81 = 71.69

Standard deviation = $\sqrt{71.69} = 8.7$

13. (a) Write the truth value of the statement: "If 2 is a prime number, then 2 is not an even number."

2 is a prime number — True

2 is not an even number — False

If $p \rightarrow q$ is False only when p is true and q is false

So this statement is False

(b) Construct the truth table for proposition $p \land (q \lor r)$

(c) Test the validity of the argument:

Let

- p: Tanzania is making a new constitution
- q: Tanzania is editing the constitution
- r: Tanzania has a constitution

Premises:

- 1. p
- 2. q V p
- 3. p \rightarrow r

Conclusion: r A p

From 1 and 3, p is true, $p \rightarrow r$ implies r is true So both r and p are true $\rightarrow r \land p$ is valid Hence, the argument is valid

- 14. (a) Three unbiased coins are tossed once
- (i) Probability tree diagram has 3 levels (H/T each) \rightarrow total 8 outcomes HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
- (ii) At most two heads = 0, 1, or 2 heads Outcomes: TTT, HTT, THT, TTH, HHT, HTH, THH \rightarrow 7 outcomes P = 7/8
- (b) Number of ways to select 9 balls: 3 red, 3 white, 3 blue Ways = $C(6,3) \times C(5,3) \times C(5,3) = 20 \times 10 \times 10 = 2000$

15. (a)
$$a = i + j + k$$

 $b = i - j - k$

$$c = i - 2j + 3k$$

Find
$$a \times (b \times c)$$

First find $b \times c$:

$$|i \ j \ k|$$

$$|1 - 1 - 1|$$

$$|1 \ -2 \ 3| = i(-1 \times 3 + 1 \times 2) - j(1 \times 3 - (-1 \times 1)) + k(1 \times -2 - (-1 \times 1))$$

$$= i(-3 + 2) - i(3 + 1) + k(-2 + 1) = -i - 4i - k$$

Then $a \times (b \times c)$:

$$a = i + j + k$$

$$\times$$
 (-i - 4j - k)

Use determinant:

$$= |i \ j \ k|$$

$$|1 \ 1 \ 1|$$

$$|-1 - 4 - 1| = i(1 \times -1 - 1 \times -4) - j(1 \times -1 - 1 \times -1) + k(1 \times -4 - 1 \times -1)$$

= $i(-1 + 4) - j(-1 + 1) + k(-4 + 1) = 3i + 0j - 3k$

So result is 3i - 3k

(b) Solve system using substitution:

$$3y + 2x = z + 1 \rightarrow z = 3y + 2x - 1$$

Substitute into:

$$3x + 2z = 8 - 5y$$

$$\rightarrow$$
 3x + 2(3y + 2x - 1) = 8 - 5y

$$3x + 6y + 4x - 2 = 8 - 5y$$

$$7x + 6y = 10 - 5y \rightarrow 7x + 11y = 10$$

Also:
$$3z - 1 = x - 2y$$

$$z = 3y + 2x - 1$$

So
$$3(3y + 2x - 1) - 1 = x - 2y$$

$$9y + 6x - 3 - 1 = x - 2y$$

$$6x + 9y - 4 = x - 2y \rightarrow 5x + 11y = 4$$

Now solve:

$$7x + 11y = 10$$

$$5x + 11y = 4$$

Subtract:
$$2x = 6 \rightarrow x = 3$$

Then
$$7(3) + 11y = 10 \rightarrow 21 + 11y = 10 \rightarrow y = -1$$

Then
$$z = 3(-1) + 2(3) - 1 = -3 + 6 - 1 = 2$$

Solution:
$$x = 3, y = -1, z = 2$$

(c) Transformation:

Matrix:
$$[2\ 0; 0\ -2]$$
, point $R(1,1)$

$$x' = 2 \times 1 + 0 = 2$$

$$y' = 0 + (-2 \times 1) = -2$$

Image: (2, -2)

16. (a)
$$dy/dx = 3x^4 - 4x^2 + 5x + 1/x^2$$

Integrate:

$$\int (3x^4 - 4x^2 + 5x + x^{-2}) dx = (3/5)x^5 - (4/3)x^3 + (5/2)x^2 - x^{-1} + C$$

So
$$y = (3/5)x^5 - (4/3)x^3 + (5/2)x^2 - 1/x + C$$

(b)
$$\int_0^{\infty} \pi (\cos x + 2\cos 2x) dx = \int_0^{\infty} \cos x dx + 2 \int_0^{\infty} \cos 2x dx$$

$$= \sin x + \sin 2x$$
 from 0 to π

$$= \sin \pi + \sin 2\pi - \sin 0 - \sin 0 = 0$$

(c) Derivative of
$$(2 - x^2)(3x + x^2)$$

Use product rule:
 $u = 2 - x^2$, $v = 3x + x^2$
 $u' = -2x$, $v' = 3 + 2x$
 $dy/dx = u'v + uv' = (-2x)(3x + x^2) + (2 - x^2)(3 + 2x)$
 $= -2x(3x + x^2) + (2 - x^2)(3 + 2x)$
 $= -6x^2 - 2x^3 + (2 \times 3 + 2 \times 2x - 3x^2 - 2x^3) = -6x^2 - 2x^3 + 6 + 4x - 3x^2 - 2x^3$
 $= -4x^3 - 9x^2 + 4x + 6$