# THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

042

## ADDITIONAL MATHEMATICS

(For Both School and Private Candidates)

Time: 3 Hours

Monday, 11th November 2019 p.m

#### Instructions

- 1. This paper consists of sections A and B with a total of fourteen (14) questions.
- 2. Answer all questions in sections A and B. Each question in section A carries six (6) marks while each question in section B carries ten (10) marks.
- 3. All necessary working and answers for each question attempted must be shown clearly.
- 4. NECTA Mathematical tables may be used.
- Calculators, cellular phones and any unauthorised materials are not allowed in the examination room.
- Write your Examination Number on every page of your answer booklet(s).



Page 1 of 4

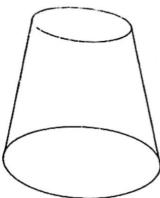
csee/1119



## SECTION A (60 Marks)

Answer all questions in this section.

- 1. (a) If  $x \alpha yz^{\frac{1}{3}}$  and  $y \alpha z^{-2}$ , show that  $x \alpha y^{\frac{5}{6}}$ .
  - (b) A quantity (y-m) is directly proportional to the square of x. Express y in terms of x, k and m.
- 2. The masses of 50 apples in grams are as follows:


| The masses of so apples in grand |     |    |     |     |     |     |     |     |     |
|----------------------------------|-----|----|-----|-----|-----|-----|-----|-----|-----|
| 86'                              |     |    | 92  |     | 113 |     |     | 111 |     |
| 100`                             | 114 |    | 96  | 116 | 104 | 99  | 101 | 105 | 117 |
| 103                              | 92  |    | 100 | 102 | 99  | 106 | 98  | 96  | 108 |
|                                  |     | 87 | 93  | 110 | 102 | 93  | 101 | 113 | 88  |
|                                  |     | 95 |     | 105 | 92  | 116 | 105 | 86  | 92  |

- (a) If the lower limit of the first class interval is 85 and the class width is 5, prepare a frequency distribution table.
- (b) Calculate the lower and upper quartiles in two decimal places.
- 3. (a) The straight line y = x 6 cuts the curve  $y^2 = 8x$  at the points P and Q. Using the graphical method, determine the coordinates of P and Q and then calculate the length of PQ in the form  $a\sqrt{b}$ .
  - (b) Find the acute angle between the lines y = x + 2 and 3x 4y + 4 = 0.
- 4. The coordinates of points A and B are (-5, n) and (2, 4) respectively. If P(x, y) moves in such a way that PA: PB = 3:2, the locus traced out by P is given by the equation  $5x^2 + 5y^2 76x 48y + 44 = 0$ . Find the value of n.
- 5. (a) Solve the following pair of simultaneous equations by using the elimination method:

$$\frac{5}{x} - \frac{3}{y} = \frac{7}{2}$$
$$\frac{2}{x} + \frac{1}{y} = \frac{5}{2}$$

- (b) (i) If the algebraic expression  $5x^2 + hx + 5$  is a perfect square, find the value of h.
  - (ii) Using the results obtained in part (i) and the factorization method, solve the equation  $5x^2 + hx + 5 = 0$ .

(a) Draw the plan, front and side elevations of the following cone.



- (b) One interior angle of an octagon is 100° and the remaining angles are of the same size. Find the value of each of the remaining interior angles.
- 7. (a) If  $\sin(x-\alpha) = \cos(x+\beta)$ , find  $\tan x$  in terms of  $\alpha$  and  $\beta$ .
  - (b) Solve the equation  $3\cos 2\theta \sin \theta + 2 = 0$  for values of  $\theta$  from  $0^{\circ}$  to  $360^{\circ}$  inclusive.
- 8. (a) Use the divisibility rule to show that 35120 is divisible by 5.
  - The sum of the squares of the first n numbers is given by  $\frac{n(n+1)(2n+1)}{6}$ . Find the sum of the first three squares when n is a natural number.
- 9. (a) By using a truth table verify that  $(p \to q) \land (q \to p)$  is equivalent to  $p \leftrightarrow q$ .
  - (b) Simplify  $(p \lor q) \land \sim p$  by using the laws of algebra of propositions.
- 10. (a) By using the basic properties of set operations, simplify  $(A \cap B') \cup (A \cup B)'$ .
  - (b) If A and B are two sets such that n(A) = 42, n(B) = 27 and  $n(A \cup B) = 59$ , find  $n(A \cap B)'$  by using a Venn diagram.

### SE TION B (40 Marks)

Answer 21 questions in this section.

- 11. (a) Sketch the graph of  $g(x) = \frac{x+3}{2x-3}$ .
  - (b) Use the graph in part (a) to determine the domain and range of g(x).
  - (c) When the function  $f(x) = 2x^4 + kx^3 11x^2 + 4x + 12$  is divided by x 3, the remainder is 60. Use the remainder theorem to compute the value of k.
- 12. (a) Differentiate f(x) = 5 from the first principles.
  - (b) Use the product rule to differentiate  $y = \cos^2 x$  with respect to x.
  - (c) Find the area enclosed by the curve  $y = x^2 3x + 2$  and the x axis.
- 13. (a) A bag contains 3 white balls. 4 red balls and 2 yellow balls. How many white balls must be added in the bag so that the probability of drawing a white ball is  $\frac{1}{2}$ ?
  - (b) Find how many different numbers can be made by using four out of the six digits 0, 1, 2, 3, 4, 5.
  - (e) Two dice are thrown at the same time. Find the probability of obtaining a total which is less than 10.
- 14. (a) If  $\underline{a} = -2\underline{i} + 5\underline{j} 3\underline{k}$  and  $\underline{b} = 3\underline{i} \underline{j} + 2\underline{k}$ , find  $\underline{a} \times \underline{b}$  and  $(\underline{a} \times \underline{b}) \in \underline{a}$ .
  - (b) Given that  $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & -1 & 0 \\ 4 & 2 & 1 \end{pmatrix}$  and  $B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & -3 & 2 \\ 1 & 1 & 1 \end{pmatrix}$ , show that  $\det(AB) = \det(A) \det(B)$
  - (c) Determine the matrix corresponding to the linear reflection of the point P(x, y) on the line y-x=0 and use it to find the point whose image under the reflection is (3, -2).