THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

042

ADDITIONAL MATHEMATICS (For Both School Private Candidates)

Time: 3 Hours

Year: 2021

Instructions

- 1. This paper consists of sections A and B with a total of fourteen (14) questions.
- Answer all questions.
- Section A carries sixty (60) marks and section B carries forty (40) marks.
- 4. All necessary working and answers for each question attempted must be shown clearly.
- NECTA Mathematical tables may be used.
- Calculators, cellular phones and any unauthorised materials are not allowed in the examination room.
- 7. Write your Examination Number on every page of your answer booklet(s).

101042 | 100012

Page 1 of 5

esee2021

SECTION A (60 Marks)

Answer all questions in this section.

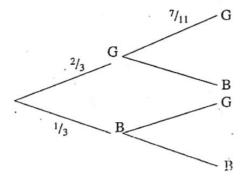
- 1. (a) An object falls a vertical distance x which varies directly as the square of the time t if it falls 900 cm in 20 seconds, write the variation equation expressing x in terms of the time t.
 - (b) It is given that y is inversely proportional to x^2 . If y = 4 when x = 3, find the value of y when x is 6.
- 2. The following table shows yields of gold in tones produced by 100 traders at a certain mine in one day.

Gold in tones	15-20	21-26	27-32	33-38	39-44	45-50
Frequency	10	22	32	21	13	2

- (a) Calculate the mean and mode if the assumed mean is 29.5 tones.
- (b) Draw the cumulative frequency curve and from it calculate the semi-interquartile range.
- 3. (a) If the points P(2,4), Q(3,y) and R(-3,4) are collinear, determine the value of y.
 - (b) Determine the coordinates of the point dividing the line joining the point (2,3) and (4,6) in the ratio 1:3
 - (i) internally.
 - (ii) externally.
- 4. (a) Define "locus of a point" as applied in mathematics.
 - (b) The cartesian coordinates of the points A and B are (-3, 0) and (3, 0) respectively. If point P moves so that AP = 2PB, prove that its locus is the circle Z whose equation is $x^2 + y^2 10x + 9 = 0$.
- 5. (a) Make t the subject of the formula $A = \left(\frac{1+t}{1-t}\right)^{\frac{1}{2}}$.
 - (b) By using the substitution method, solve the following pair of simultaneous equations: $\begin{cases} x^2 + y^2 = 18 \\ y 2x = -3 \end{cases}$
- 6. (a) A regular polygon is such that each interior angle is twice the exterior angle. What is the size of each interior angle and exterior angle?

esce2020

- (b) (i) Indicate all lines of symmetry on a diagram of a regular pentagon by using dotted lines.
 - (ii) State the order of rotational symmetry of the regular pentagon drawn in part b(i).
- 7. (a) Show that $\frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta} = \tan \theta$
 - (b) Derive the trigonometric identity $\cos^2 \theta + \sin^2 \theta = 1$.
- 8. (a) (i) What is the rule governing the divisibility of any number by 9.
 - (ii) Show whether 1091524 is divisible by 9.(b) The following table shows the pattern of coefficients in the Pascal's triangle:


Power	Coefficients						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1
7							

How can the entry 20 in the sixth line be obtained? Write the entries in the seventh line.

- 9. (a) Prepare the truth table for $[(\sim p \lor \sim q) \to \sim (p \land q)] \lor [(p \lor q) \to (\sim p \land \sim q)]$.
 - (b) By using the laws of algebra of propositions, show whether the statement $p \wedge q$ logically implies $p \leftrightarrow q$.
- 10. (a) Given the universal set $\mu = \{1, 2, 3, ..., 12\}$ and its subsets $A = \{1, 3, 5, 7\}$, $B = \{2, 3, 4, 5, 6, 8\}$ and $C = \{2, 3, 7, 10, 10\}$, find the elements of $(A \cap B)' \cup C$.
 - (b) If A, B and C are any three sets such that n(A) = 8, n(B) = 12, n(C) = 16, $n(A \cap B) = 5$, $n(A \cap C) = 4$, $n(A \cup B \cup C) = 20$ and $n(A \cap B \cap C) = 2$, find $n(B \cap C)$.

Answer all questions in this section.

- 11. (a) The roots of a quadratic equation $ax^2 + bx + c = 0$ are such that the first root is three times the second root. Show that $3b^2 = 16ac$.
 - (b) When the function $f(x) = 2x^4 + kx^3 11x^2 + 4x + 12$ is divided by x 3, the remainder is 60. Use the remainder theorem to compute the value of k.
 - (c) Sketch the graph of $f(x) = \frac{x+2}{x^2-9}$.
- 12. (a) Use the quotient rule to differentiate $\left(\frac{1+x}{2+x}\right)^2$ with respect to x.
 - (b) Given the curve $y = 2x^3 3x^2 36x + 3$:
 - (i) find the minimum value of y.
 - (ii) determine the value of x at the point of inflexion.
 - (c) Compute the area enclosed by the curve $y = x^2 4$ and the x axis.
- 13. (a) A bag contains 8 green discs (G) and 4 blue discs (B). A disc is drawn and not replaced. A second disc is drawn. Copy and complete the following tree diagram then answer the questions that follow:


Find the probability that;

- (i) both discs are green,
- (ii) both discs are blue,
- (iii) one disc is green and one disc is blue.
- (b) If A and B are dependent events whereby $P(A) = \frac{1}{5}$, $P(B) = \frac{3}{10}$ and $P(A/B) = \frac{1}{10}$, find $P(A \cup B)$ and $P(B \cap A')$.
- (c) In how many ways can 11 people be seated on a bench if only 6 seats are available?

Page 4 of 5

csee2020

- (a) Find the work done when a force given by $\underline{F} = 4\underline{i} 3\underline{j} + 6\underline{k}$ displaces an object from A(0,4,5) to B(3,12,10).
 - (b) The position vectors of the points A and B are $\underline{a} = 5\underline{i} \underline{j} 3\underline{k}$ and $\underline{b} = \underline{i} + 3\underline{j} 5\underline{k}$ respectively. Show that vector $\underline{a} + \underline{b}$ is perpendicular to vector $\underline{a} \underline{b}$.
 - (c) Determine the image of (3,-8) under a reflection in the line x+y=0 followed by a rotation of -90° clockwise about the origin.

Page 5 of 5

csee2020