# THE UNITED REPUBLIC OF TANZANIA

## NATIONAL EXAMINATIONS COUNCIL OF TANZANIA

## CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

071

### **BIOLOGY 2**

### ALTERNATIVE TO PRACTICAL

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2012

#### **Instructions**

- 1. This paper consists of sections Five questions. Answer all questions
- 2. Each question carries ten marks.



| 1. A form two student was provided with a food mixture A <sub>1</sub> containing food extracts obtained from maize |
|--------------------------------------------------------------------------------------------------------------------|
| flour and honey. The student was asked to carry out food tests so as to identify the food substances contained     |
| in the mixture                                                                                                     |

| (a) Write | down a  | a report | of the | experiment | the | student | was | supposed | to | carry | out | using | a table | as t | he c | ne |
|-----------|---------|----------|--------|------------|-----|---------|-----|----------|----|-------|-----|-------|---------|------|------|----|
| shown be  | low (Ta | able 1). |        |            |     |         |     |          |    |       |     |       |         |      |      |    |

| Food tested                                                                                                 | Procedure                         | Observations             | Inference                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|---------------------------|--|--|--|
|                                                                                                             |                                   |                          | -                         |  |  |  |
| Starch   A                                                                                                  | Add iodine solution to the sample | Blue-black color appears | Starch is present         |  |  |  |
| Reducing sugars   Add Benedict's solution and heat   Color changes to brick-red   Reducing sugars (glucose) |                                   |                          |                           |  |  |  |
|                                                                                                             |                                   |                          | are present               |  |  |  |
| Proteins                                                                                                    | Add Biuret solution               | Purple color appears     | Proteins are present      |  |  |  |
| Lipids                                                                                                      | Add ethanol and water             | White emulsion forms     | Lipids (fats) are present |  |  |  |

- (b) State the importance of the food substances stated in 1(a) to the human body.
- Starch: Provides energy as it is broken down into glucose.
- Reducing sugars: Provide quick energy since they are easily absorbed.
- Proteins: Essential for growth, repair, and body tissue formation.
- Lipids: Serve as an energy store and provide insulation.
- 2. (a) You are provided with the following organisms:
- (i) Identify organisms A, B, C, D, E, F, G, and H by their common names.
- A: Bat
- B: Flying lizard
- C: Snake
- D: Bird
- E: Frog
- F: Fish
- G: Crocodile
- H: Butterfly
- (ii) Classify the animals into three (3) groups using only one observable characteristic for each group. Tabulate your results as shown in Table 2.

| $ \:Groups\: \:\:Name\:of\:the\:animal(s)\: \:$ | One characteristic                        |
|-------------------------------------------------|-------------------------------------------|
| -                                               |                                           |
| Group 1   Bat, Bird, Butterfly                  | Have wings for flight                     |
| Group 2   Fish, Crocodile, Frog   I             | Live in water or have aquatic adaptations |
| Group 3   Snake, Lizard                         | Have scales and crawl                     |

- (iii) What type of classification have you used?
- The classification is based on morphological characteristics (physical appearance).
- (b) (i) Mention another system of classification used in Biology.
- Binomial nomenclature or Taxonomic classification.
- (ii) Differentiate the system of classification mentioned in (b)(i) with the one used in (a)(iii).
- Binomial nomenclature is a universal system where organisms are named using two Latin words representing genus and species, while morphological classification groups organisms based on external observable features such as body structure and movement.
- 3. An experiment was set up as shown in Figure 1. The mixture of yeast and glucose solution was warmed for 10-15 minutes in a water bath at  $40^{\circ}$ C.
- (a) (i) What changes would you expect to observe?
- Lime water will turn milky.
- Bubbles will be produced in the solution.
- (ii) How do you explain the changes mentioned in (a)(i)?
- Yeast ferments glucose, releasing carbon dioxide, which reacts with lime water to form an insoluble precipitate, making it appear milky.
- (b) What was the aim of the experiment?
- To investigate the process of anaerobic respiration (fermentation) in yeast.
- (c) What is the purpose of using glucose in the experiment?
- Glucose is the substrate for respiration, providing energy for the yeast.
- (d) Why was it necessary to have a layer of oil above the yeast and glucose solution?
- To prevent oxygen from entering the solution, ensuring that anaerobic respiration occurs.
- (e) Suggest a suitable control experiment.
- Set up another test tube with boiled yeast (denatured enzymes) and glucose to confirm that no fermentation occurs.
- (f) What conclusions can be drawn from the results of the experiment?
- Yeast undergoes anaerobic respiration and produces carbon dioxide.
- Fermentation occurs in the absence of oxygen.
- (g) Mention the economic importance of the process that took place in the experiment in Figure 1.
- Used in the baking industry for making bread rise.
- Used in brewing for alcohol production.
- Helps in the production of biofuels.

- 4. Figure 2 shows different stages of an experiment that was carried out using seedlings. Seedlings were placed in two pots A and B. The seedlings in pot B had their tips cut off while those in pot A were left intact. The experiment was observed for 2-3 days.
- (a) What was the aim of the experiment?
- The aim of the experiment was to investigate the role of the shoot tip in controlling plant growth and response to light (phototropism).
- (b) (i) Briefly describe the mechanism behind the response of the seedlings in pot A.
- The seedlings in pot A responded to light due to the hormone auxin, which accumulates on the shaded side of the shoot.
- Auxin promotes cell elongation, causing the shoot to bend towards the light source.
- (ii) Why were there no significant changes in pot B?
- The tips of the seedlings in pot B were removed, eliminating the source of auxin.
- Without auxin, the seedlings were unable to bend toward the light, leading to no observable directional growth.
- (c) What conclusions can be drawn from the experiment?
- The shoot tip is essential for plant response to light as it produces auxin.
- Auxin promotes phototropism by causing differential growth on the illuminated and shaded sides of the shoot.
- (d) Explain why shoots deprived of light grow very tall.
- In darkness, auxin is distributed evenly throughout the shoot.
- Without light, there is no inhibition of auxin activity, leading to uninhibited elongation of cells.
- This causes excessive elongation, making the shoot grow tall in search of light (etiolation).
- 5. Table 3 summarizes an experiment that was carried out to show the rate of water loss and uptake by a plant on a bright day.

| Time (Hours)   Rate of water movement (mm <sup>3</sup> /h) |        |    |  |   |  |  |  |  |
|------------------------------------------------------------|--------|----|--|---|--|--|--|--|
|                                                            |        |    |  | - |  |  |  |  |
| Water uptake   Water loss                                  |        |    |  |   |  |  |  |  |
| 6 a.m.                                                     | 17     | 10 |  |   |  |  |  |  |
| 8 a.m.                                                     | 17     | 15 |  |   |  |  |  |  |
| 10 a.m.                                                    | 30     | 55 |  |   |  |  |  |  |
| 12 noor                                                    | n   50 | 65 |  |   |  |  |  |  |
|                                                            |        |    |  |   |  |  |  |  |

```
| 2 p.m.
           | 58
                     | 68
| 4 p.m.
           | 57
                     | 63
6 p.m.
           | 58
                     | 58
| 8 p.m.
           | 45
                     134
| 10 p.m.
           | 20
                     | 15
                      | 10
| 12 midnight | 17
                     | 10
| 2 a.m.
           | 17
4 a.m.
           | 17
                     | 10
6 a.m.
           | 17
                     10
```

- (a) Use Table 3 to find out the following:
- (i) The time when optimum rate of water loss took place.
- The highest rate of water loss occurred at 2 p.m. (68 mm<sup>3</sup>/h).
- (ii) The time when the rate of water uptake was equal to the rate of water loss.
- This occurred at 6 p.m. (58 mm<sup>3</sup>/h for both water uptake and loss).
- (b) Explain why the water content of the plant increased during the time interval from 10 p.m. to 6 a.m.
- During this period, water loss was minimal due to reduced transpiration at night.
- However, water uptake continued at a steady rate, replenishing lost water.
- The stomata were mostly closed, reducing evaporation, allowing the plant to store more water.
- (c) (i) What is the name of the process of water loss observed in the plant?
- Transpiration
- (ii) State the importance of this process to the plant.
- Cools the plant by removing excess heat.
- Facilitates the uptake and transport of water and minerals from the roots.
- Maintains turgor pressure, keeping the plant firm.
- Aids in the exchange of gases through stomata.
- (d) How do xerophytes adapt to avoid excessive loss of water?
- Have thick waxy cuticles to reduce evaporation.
- Possess sunken stomata to trap moisture and minimize transpiration.
- Store water in fleshy leaves, stems, or roots.
- Reduce the number of stomata or close them during the day.
- Have deep root systems to access underground water sources.