Madale JA

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION, 1992

032/2

CHEMISTRY PAPER 2 ALTERNATIVE PRACTICAL

(For both School and Private Candidates)

TIME: 3 Hours.

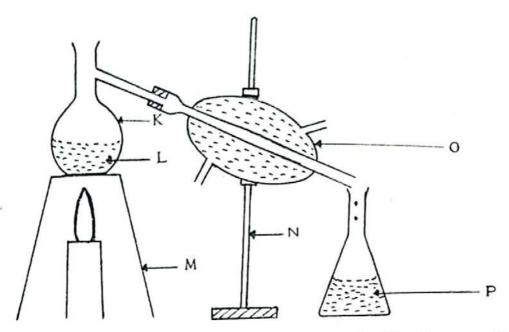
- 1. This paper consists of sections A, B and C.
- Answer ALL questions in each of the sections A, B and C.
- 3. Where calculations are involved, you are required to show ALL the steps involved.
- 4. Each question in each section carries a total of ten (10) marks.
- 5. Remember to write your Index Number on every page of your answer book provided.
- 6. Write the number of each question you attempt.
- 7. In your calculations you may use the following atomic masses:

$$H = 1$$
, $C = 12$, $N = 14$, $O = 16$, $N_a = 23$, $M_g = 24$, $S = 32$, $C_1 = 35.5$, $K = 39$, $C_a = 40$.

This paper consists of 6 printed pages.

SECTION A

Answer ALL questions in this section.


- 1. (a) State the use of each of the following apparatus:
 - (i) Glass retort
 - (ii) Gas jar
 - (iii) Pipette
 - (iv) Fractionating column
 - (v) Test tube
 - (vi) Evaporating dish.
 - (b) Draw a diagram to show
 - (i) a test-tube rack
 - (ii) a fractionating column.
- 2. An experiment was carried out to find the effect of temperature on the rate of a chemical reaction. In this experiment, $10 \, \text{cm}^3$ of 2M sodium thiosulphate were mixed with $10 \, \text{cm}^3$ of 2M hydrochloric acid. The time taken for the reaction to go to completion at varying temperatures was recorded as follows.

Temp. °C	Time (s)
10	35
15	27.5
20	23
25	20
30	17
40	15

- (a) Use the above data to plot a graph of time (s) vs temperature (°C).
- (b) Use your graph in 1(a) above to explain the effect of temperature on the rate of reaction.
- (c) Give three (3) other factors which can affect the rate of any chemical reaction.
- 3. (a) Draw a labelled diagram that represents the electrolysis of dilute sulphuric acid.
 - (b) Write a summary of the reaction of the electrolysis of dilute sulphuric acid at the
 - (i) anode

(ii) cathode.

4. A colourless liquid NN, which turns anhydrous copper (II) sulphate blue, was mixed with potassium permanganate crystals and the mixture heated as shown in the diagram below.

- (a) (i) Give the names and colours of liquids L and P
 - (ii) Give the names of the apparatus M, N and O.
- (b) Which of the two liquids, L and P, is purer than the other and why?
- (c) Suggest the name of the process involved in the set up of the above experiment.

SECTION B

- The following tests and · observations made on sample FE, a mixture of two salts, were recorded as follows.
 - (a) The appearance of the sample indicated that it contained a mixture of green crystals and white powder.
 - (b) When FE was dissolved in distilled water, a blue solution was formed and white solid remained at the bottom of the test tube.
 - (c) By decantation, the blue solution was separated from the undissolved solid.
 - (i) Sodium carbonate solution was added to the blue solution, then heated. A light blue precipitate was observed. The precipitate turned black on heating and a gas which turned lime water milky was evolved.
 - (ii) Ammonia solution was added to another portion of the blue solution in (b) above. A blue precipitate was formed which dissolved in excess ammonium hydroxide to form a deep blue solution.

- (d) When Manganese (IV) oxide was added to the solid sample FE followed by addition of concentrated sulphuric acid then boiled, a greenish yellow gas which bleached red litmus paper was evolved.
- (e) When dilute nitric acid was added to the insoluble portion obtained in (c) above, a clear solution was formed.
- (f) Addition of sodium hydroxide to the solution obtained in (e) above, a white precipitate which was insoluble in excess alkali was observed.
- (g) Addition of ammonium oxalate solution to another portion of the solution in (e) above, a white precipitate was observed.
- (h) Addition of Barium chloride solution to a third portion of the solution in (e) above followed by addition of dilute hydrochloric acid, a white precipitate insoluble in excess of the acid was

 - (b) Write the equation for the reaction between sodium carbonate solution and the filtrate obtained in (c) above
 - (i) before heating
 - (ii) after heating.
 - (c) Write the ionic equation for the reactions in (e) and (f) above.

6. (a) Complete the following table:

4 B

EXPERIMENT	OBSERVATIONS	INFERENCES
(i) Solid sample OM + hea	Reddish-brown gas which re-lights a glowing splint is evolved. The remaining solid is reddish-brown when hot and yellow when cold.	
(ii) Solution of OM + ammonium hydro- xide solution.	White ppt insoluble in excess.	
iii) Solution of CM + Potassium iodide solution.	Yellow ppt formed.	
(iv) Solution of OM + Iron (II) sulphate solution + conc. H ₂ SO ₄	Brown ring between solution OM and iron (II) sulphate formed.	

(P)	From the	above tests,	obse	ervations	and your	inferences,	the
	cation in	sample OM	is		• • • • • • • • •	and the	
	anion is		• • •				

- (c) The chemical formula of sample OM is
- 7. Given that sample NP contains one cation and one anion, complete the following table.

	EXPERIMENT	OBSERVATIONS	INFERENCES
(a)	Appearance of NP		Indicates presence of Fe ²⁺ or Cu ²⁺
(P)	Solution of NP + sodium hydroxide solution.		Cu ²⁺ present
(c)	Solution NP + sodium carbonate solution.		Cu ²⁺ present
(4)	Solution NP + excess ammonia solution.		Cu ²⁺ confirmed
(e)	Solution NP + silver nitrate solution.		Indicates presence of Cl ⁻
(f)	Solution NP + conc H ₂ SO ₄ + Manganese (IV) oxide + warming.		Cl confirmed.

CONCLUSION:

The	chemical	name	and formu	la of s	ample	•			
NP (cho	are	mula).		(N _{ame})	and	• • • • • • • • • • • • • • • • • • • •	• • • • • •	••••	• • • • • •

SECTION C

- 8. 0.12M aqueous nitric acid was titrated against 25.00 cm³ of aqueous sodium hydroxide. 22.50 cm³ of the acid reacted completely with 25.00 cm³ of the base.
 - (a) Write a balanced chemical equation for the above neutralization reaction.
 - (b) Sketch and label all the apparatus used in the experiment above
 - (c) Calculate the
 - (i) molarity
 - (ii) concentration of the base in the above reaction.

- (d) Suggest the indicator used in the above experiment. $\begin{bmatrix} H=1, & N=14, & O=16, & N_a=23, & C=12 \end{bmatrix}$
- 9. Ando was provided with the following:

WW - A solution of 0.120 M HCl

ZZ - A solution of hydrated sodium carbonate (Na₂CO₃xH₂O) containing 14.30 g/dm³.

On titration, by using a 20 cm³ pipette, he obtained the following readings.

Burette readings	Pilot	1	2	3	4
Final volume (cm ³)	18.00	35.90	27.90	45.50	27.60
Initial volume (cm ³)	00,00	18.00	10.20	27.90	10.00
Volume used (cm ³)					

- (a) (i) Suggest the indicator used by Ando in his titrations.
 - (ii) Suggest the colour change at the end point.
- (b) (i) Complete the table above
 - (ii) Calculate the average volume used for complete neutralization of the base by the acid.
- (c) Find the value of x in the formula $Na_2CO_3xH_2O$.

$$H = 1$$
, $C = 12$, $O = 16$, $C1 = 35.5$, $N_a = 23$.

- 10. Given a bottle containing 9M H2SO4,
 - (a) Calculate the number of
 - (i) grams of the acid in 1dm
 - (ii) moles of the acid in 50cm³.
 - (b) (i) If 20cm of the acid were to be diluted to 1M, how many millilitres of distilled water would be needed?
 - (ii) What would be the total volume added in b(i) above?

$$[H = 1, O = 16, S = 32]$$