THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A ALTERNATIVE A PRACTICAL (For Both School and Private Candidates)

TIME: 3 Hours 30 Minutes

2006/10/18 a.m.

Instructions

- 1. This paper consists of three (3) questions.
- 2. Answer two (2) questions including question number 1.
- 3. All questions carry equal marks.
- 4. Qualitative Analysis Guidance Pamphlets may be used after a thorough check by the supervisor.
- 5. Electronic calculators are not allowed in the examination room.
- 6. Cellular phones are **not** allowed in the examination room.
- 7. Write your Examination Number on every page of your answer booklet(s).
- 8. The following constants may be used:

Atomic masses:

H = 1, CI = 35.5, Na = 23, C = 12, O = 16.

 $1 \text{ dm}^3 = 1 \text{ litre } = 1000 \text{ cm}^3$.

This paper consists of 3 printed pages.

 You are provided with the following: Solution AA containing 3.65 g of HCl per dm³ of the solution. Solution BB containing 7.15 g of hydrated sodium carbonate (Na₂CO₃ x H₂O) in 0.5 dm³ of the solution.
 Methyl orange indicator.

Determine the value of x in Na₂CO₃.xH₂O. Procedure

procedure to obtain three more readings.

Put the acid solution AA in the burette. Pipette 20 cm³ (or 25 cm³) of solution BB into the titration flask. Add two drops of methyl orange indicator. Titrate solution BB against solution AA from the burette until a colour change is observed. Note the reading of the burette. Repeat the

(a) (i) Record your results in a table as shown below.
Burette readings

Titration	Pilot	1	2	3
Final reading (cm ³)				
Initial reading (cm ³)				
Volume used (cm ³)				

- (ii) The volume of pipette used was ____ cm³.
- (iii) Summary:
 ____ cm³ of solution BB required ____ cm³ of solution AA for complete reaction.
- (iv) The colour change at the end point was from _____ to ____
- (v) Write the balanced chemical equation for the reaction between solution AA and BB.
- (c) Calculate the
 - a. concentration of solution AA in moles/dm³
 - b. molarity of solution BB
 - c. determine the value of x in Na₂CO₃.xH₂O. marks)

(25

CS_06

2.	Sample Q is a pure salt containing one cation and one anion. Carry out carefully the experiments
	described below. Record all your observations and appropriate inferences. Identify the cation and anion present in sample Q.

	Experiment	Observation	Inference
(a) App	pearance of sample Q.		
	half a spatula of sample Q in a test tube add centrated H ₂ SO ₄ and warm.		
	half a spatula of sample Q in a test tube add distilled ter and stir then boil.		
(d) Dis Div (i) (ii) (iii)	till excess		

Conclusion		
The cation in sample Q is	and the anion is	
Write the molecular formula of	(25 marks	

3. Sample M is a simple salt containing one cation and one anion. Using systematic qualitative analysis procedures carry out tests on sample M and make appropriate observations and inferences to identify the cation and anion in sample M.

Experiment Observation		Inference	

X5000000000000000000000000000000000000		
Conclusion		
The cation in M is	and the anion is	. (25 marks)