THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

32/2A

CHEMISTRY 2A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

ime: 2:30 Hours

Tuesday, 11th November 2014 a.m.

Instructions

- . This paper consists of three (3) questions. Answer all the questions.
- Question 1 carries twenty (20) marks and the rest carry fifteen (15) marks each.
- . Qualitative Analysis Guidance Pamphlets may be used after a thorough check by the supervisor.
- Cellular phones and calculators are **not** allowed in the examination room.
- Write your **Examination Number** on every page of your answer booklet(s).
- . You may use the following constants:

Atomic masses:

$$H = 1$$
, $C = 12$, $O = 16$, $K = 39$.
1 litre = 1 dm³ = 1000 cm³.

- You are provided with the following solutions: 1.
 - H: Containing 6.3 g of hydrated oxalic acid, (COOH)₂.XH₂O in 1dm³ of solution.
 - M: Containing 1.4 g of potassium hydroxide in 0.5 dm³ of the solution. Phenolphthalein indicator.

Questions

- Titrate the acid (in a burette) against the base (in a conical flask) using h drops of the indicator and obtain three titre values. (b)
- cm³ of M required cm³ of H for complete reaction.
 - (ii) The colour change at the end point was from to
 - (iii) Is the use of methyl orange indicator in this experiment as suitable as the use phenolphthalein? Give a reason for your answer.
- Showing your procedures clearly, determine the value of X in the form (c) (COOH)2.XH2O given that the equation for the reaction $(COOH)_{2(aq)} + 2KOH_{(aq)} \rightarrow (COOK)_{2(aq)} + 2H_2O_{(1)}$.
- State any four precautions you would observe to ensure accuracy in this experiment. (d) (20 mark
- You are provided with the following: 2.

Solution Z containing 1 M sodium thiosulphate (Na₂S₂O₃);

Solution T containing 0.1 M nitric acid (HNO₃);

Distilled water;

Piece of paper marked X;

Stop-watch.

Procedure

- Using measuring cylinder, measure 5 cm³ of solution **Z** and put into 100 cm³ beaker.
- Measure 5 cm³ of solution T and put into 100 cm³ beaker containing solution Z, at
- (iii) Swirl the contents in the 100 cm³ beaker and put the beaker on top of mark X on the pier of the paper. Watch the mixture from the above and observe changes.
- (iv) Switch off the stop-watch when the mark X disappears.
- (v) Record the time taken for the letter X to disappear.
- (vi) Repeat procedures (i) to (v) using the data shown in Table 1.

Table 1

Experiment	Vol. of T (cm ³)	Vol. of Z (cm ³)	Vol. of Distilled	Time (s)
2	5	5	water (cm ³)	
3 4	5	3	2	
	3	2	3	

Questions

- (a) Complete Table 1.
- (b) Write a balanced equation for reaction between T and Z.
- (c) What substance was produced during the reaction which obscured letter X?
- (d) Plot the graph of volume of Na₂S₂O₃ solution against time (s).
- (e) What conclusion can you draw from this experiment?

(15 marks)

Sample \mathbf{Q} is a simple salt containing one cation and one anion. Carry out the experiments described below. Record carefully your observations, inferences and finally identify the anion and cation present in sample \mathbf{Q} .

Table 2

S/n	Experiment	Observation	Inference
(a)	Observe the appearance of sample Q .		11110101100
(b)	Dissolve a little sample Q in distilled water in a test tube, stir and then boil.		
(c)	Put a spatulaful of sample Q in a test tube then add concentrated sulphuric acid and warm.		
(d)	Put a spatulaful of sample Q in a test tube and then add dilute nitric acid. Divide the resulting solution into three portions and add the following: i. NaOH solution till in excess to the first portion.		
	ii. KI solution till in excess to the second portion.		
	iii. AgNO ₃ solution followed by dilute HNO ₃ and then NH ₃ solution to the third portion.		

COII	Clusic)N					
(i)	The	cation	in	compl	~ () i.c	

Canalmaia

(1)	The cation in sample \mathbf{Q} is	
(ii)	The anion in sample \mathbf{Q} is	
(iii)	The formula of the compound Q is .	
(iv)	The name of compound Q is	(15 marks)