THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2001

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

- 1. You are provided with the following:
- (a) Solution A which contains 4.39 g of sulphuric acid per dm³
- (b) Solution B of monovalent metal X hydroxide. Solution B is made by dissolving 2.00 g of X hydroxide in distilled water and making up to 1000 cm³
- (c) Methyl orange indicator

Procedure:

Put the acid solution in the burette. Pipette 25 cm³ of solution B into the titration flask. Add a few drops of methyl orange indicator. Titrate this base against solution A until the end point is reached. Record your titration results.

- (a) Volume of pipette used was 25.00 cm³
- (b) Table of results

Titration	Final reading (cm ³)	Initial reading (cm ³)	Volume used (cm³)
Pilot	24.90	0.00	24.90
1	25.00	0.00	25.00
2	24.80	0.00	24.80
3	25.00	0.00	25.00

- (c) The colour change at the end point was from yellow to pink-orange
- (d) The volume of acid solution A needed for complete neutralisation was 24.93 cm³
- (e) Write a balanced equation for the reaction

$$H_2SO_4 + 2XOH ----> X_2SO_4 + 2H_2O$$

- (f) Calculate:
- (i) The molarity of acid solution

$$Mass = 4.39 g$$

Molar mass of $H_2SO_4 = 98$

Moles = $4.39 \div 98 = 0.0448$ mol

Molarity = 0.0448 mol/dm^3

(ii) The molarity of the base solution

Moles of H_2SO_4 used = $0.0448 \times (24.93 \div 1000) = 0.001117$ mol

From equation, 1 mol H₂SO₄ reacts with 2 mol XOH

Moles of XOH = $0.001117 \times 2 = 0.002234$ mol

Volume = $25.00 \text{ cm}^3 = 0.025 \text{ dm}^3$

Molarity = $0.002234 \div 0.025 = 0.08936 \text{ mol/dm}^3$

(iii) The molar mass of monovalent metal X hydroxide

Concentration = $2.00 \text{ g in } 1 \text{ dm}^3$ Molar mass = $2.00 \div 0.08936 = 22.38 \text{ g/mol}$

(iv) The atomic mass of metal X

$$XOH = X + 16 + 1 = X + 17$$

$$X + 17 = 22.38$$

$$X = 5.38$$

$$X \approx 6$$

Atomic mass of X = 6

- (v) Metal X is most likely lithium (Li)
- 2. Sample X is a simple salt containing ONE cation and ONE anion. Carry out the experiments described and identify the cation and anion in sample X.

Test Experiment	Observation	Inference				
(i) Appearance (ii) Heat a spatula of sample X in a te	White crystalline solid	Colourless ionic salt Presence of ammonium salt				
(iii) Add NaOH solution and warm. Test gas with moist red litmus Gas turns red litmus blue Ammonia evolved confirms NH4+						
(iv) Add dilute HCl to X, warm, pass gas into limewater Effervescence, gas turns limewater milky CO ₃ ²⁻ present						
(v) Add FeSO ₄ , then conc. H ₂ SO ₄ down the test tube side Brown ring observed at interface Confirms NO ₃ ⁻						
	· ·	alt is soluble Confirms PO ₄ ³⁻ or carbonate				

Conclusion

The cation is NH₄⁺ and the anion is CO₃²⁻

- (a) Balanced chemical equations:
- (ii) $NH_4Cl + NaOH \longrightarrow NaCl + NH_3 + H_2O$
- (iv) $(NH_4)_2CO_3 + 2HC1 ----> 2NH_4C1 + H_2O + CO_2$
- (b) Confirmatory test for CO₃²⁻: Add HCl and pass evolved gas through limewater; turns milky

3. Sample Z contains ONE cation and ONE anion. Using systematic qualitative analysis procedures, identify the ions in sample Z.

Test	*	Observation	Inference			
(a)	Observe physical appearance of Heat solid Z in a dry test tube	Z White crystalline solid No water or gas evolved	Colourless ionic salt No water of crystallization			
$ \ (c)\ \ Dissolve\ in\ water\ and\ add\ NaOH\ dropwise\ and\ in\ excess\ \ White\ precipitate,\ soluble\ in\ excess\ \ Zn^{2+}\ confirmed\ $						
\mid (d) \mid Add NH ₄ OH dropwise and then in excess \mid White precipitate, dissolves in excess \mid Confirms Zn ²⁺						
(e) Add BaCl2 then HCl to solution of Z White precipitate persists Confirms SO42- (f) Add AgNO3 to solution of Z followed by HNO3 No precipitate Confirms absence of Cl-,						
(g)	Perform flame test 1	No colour	Non-alkali metal			

Conclusion

The cation present in Z is Zn^{2+} and the anion is $SO_4{}^{2-}$