THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2008

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following:

Solution N containing 9.0 g of H₂X per dm³ of the solution Solution M containing 4.91 g of sodium hydroxide per dm³ of the solution Solution P is phenolphthalein indicator

Procedure

Put solution M into the burette. Pipette 25 cm³ of solution N into the titration flask. Put two to three drops of P into the titration flask. Titrate solution M from the burette against solution N in the titration flask until a colour change is observed. Note the burette reading. Repeat the procedure to obtain three more readings. Record your results as shown in Table 1.

Table 1: Burette readings

Titration	Final reading (cm ³)	Initial reading (cm ³)	Volume used (cm³)
Pilot	19.20	0.00	19.20
1	19.30	0.00	19.30
2	19.20	0.00	19.20
3	19.20	0.00	19.20

- (a) Give the volume of the pipette used 25.00 cm³
- (b) Give the volume of solution M needed for complete neutralization of solution N Average volume of $M = (19.30 + 19.20 + 19.20)/3 = 19.23 \text{ cm}^3$
- (c) Tell the colour change of the indicator at the end point of the titration Pink to colourless
- (d) Write the balanced chemical equation for the reaction between solution M and N $H_2X + 2NaOH ----> Na_2X + 2H_2O$
- (e) Calculate the
- (i) Molarity of solution M

Mass of NaOH = 4.91 g

Molar mass of NaOH = 40 g/mol

Moles = $4.91 \div 40 = 0.12275$ mol

Molarity = 0.12275 mol/dm^3

(ii) Molar mass of H₂X

Volume of $M = 19.23 \text{ cm}^3 = 0.01923 \text{ dm}^3$

Moles of NaOH = $0.12275 \times 0.01923 = 0.002361$ mol

From equation: 2 mol NaOH react with 1 mol H₂X

Moles of $H_2X = 0.002361 \div 2 = 0.0011805$ mol

Volume of H_2X used = 25.00 cm³ = 0.025 dm³ Moles per dm³ = 0.0011805 \div 0.025 = 0.04722 mol Mass of H_2X = 9.0 g per dm³ Molar mass = 9.0 \div 0.04722 = 190.6 g/mol

(iii) Mass of X in
$$H_2X$$

 $H_2X = 2H + X = 2(1) + X = 190.6$
 $X = 190.6 - 2 = 188.6$ g/mol

2. Sample D is a simple salt containing one cation and one anion. Carry out carefully the experiments described below recording all your observations and appropriate inferences as shown in Table 2 to identify the cation and anion present in D.

Table 2

(a) Observe the appearance of salt D Observation: White crystalline solid Inference: Colourless ionic compound

(b) Put a little solid sample D in a clean and dry test tube and heat Observation: No visible change or colourless gas evolved Inference: No water of crystallization or presence of carbonate

- (c) Add distilled water to a spatula of sample D, stir and divide into four portions:
- (i) Add aqueous ammonia slowly to the first portion Observation: Light blue precipitate dissolves in excess Inference: Cu²⁺ present
- (ii) Add aqueous ammonia slowly to the second portion Observation: Repeats confirmatory test; light blue ppt forms Inference: Confirms Cu²⁺
- (iii) Add potassium hexacyanoferrate(II) to the third portion Observation: Reddish-brown precipitate Inference: Confirms Cu^{2+} (forms $Cu_2[Fe(CN)_6]$)
- (iv) Add dilute HCl followed by BaCl₂ to the fourth portion Observation: White precipitate Inference: SO₄²⁻ present

Conclusion

The cation in sample D is Cu²⁺ and the anion is SO₄²⁻ The molecular formula of salt D is CuSO₄

3. Sample Y is a simple salt containing one anion and one cation. Using systematic qualitative analysis procedures carry out tests on sample Y and make appropriate observations and inferences to identify the cation and anion present in sample Y.

Experiment: Add NaOH solution

Observation: Reddish-brown precipitate forms

Inference: Fe³⁺ present

Experiment: Add BaCl₂ solution Observation: White precipitate forms

Inference: SO₄²⁻ present

Conclusion

The cation in sample Y is Fe^{3+} and the anion is SO_4^{2-}