THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2011

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following:

AA: A solution of 0.2 M nitric acid (HNO₃)

BB: A solution of 4.2 g Na₂CO₃ per 0.5 dm³ of solution

MO: Methyl orange indicator

Questions

- (a)
- (i) Calculate the average titre volume.

Assume average titre = 25.0 cm^3

(ii) Summary:

25.0 cm³ of solution BB required 25.0 cm³ of solution AA for complete reaction.

- (b) If the mole ratio for the reaction is 1:1, find:
- (i) Concentration of Na₂CO₃ in mol/dm³ and g/dm³

Molar mass of $Na_2CO_3 = 106$ g/mol

Moles = mass/molar mass = 4.2 g / 106 g/mol = 0.0396 mol

Volume = 0.5 dm^3

Concentration in $mol/dm^3 = 0.0396 \ mol \ / \ 0.5 \ dm^3 = 0.0792 \ mol/dm^3$

Concentration in $g/dm^3 = 4.2 g / 0.5 dm^3 = 8.4 g/dm^3$

(ii) Molecular mass of Na_xCO₃

Let the molar mass of Na_xCO_3 be M = 106

$$M = x(23) + 12 + 3(16)$$

$$106 = 23x + 60$$

$$x = (106 - 60)/23 = 2$$

(iii) Atomic mass of x and replace it in the formula Na₂CO₃

x = 2

Formula: Na₂CO₃

(c) Write a balanced chemical equation for the reaction in this experiment.

 $Na_2CO_3(aq) + 2HNO_3(aq) ----> 2NaNO_3(aq) + H_2O(1) + CO_2(g)$

(d) What is the significance of the indicator in this experiment?

Methyl orange indicates the endpoint of titration by changing colour when the acid completely reacts with the base.

(e) Why is there a colour change when enough acid has been added to the base?

Because all carbonate ions react with H⁺ ions, the solution becomes acidic, causing the indicator to shift colour from yellow to red.

2. You are provided with the following materials:

TT: A solution of 0.13 M Na₂S₂O₃ (sodium thiosulphate)

2

Find this and other free resources at: http://maktaba.tetea.org

HH: A solution of 2 M HCl Distilled water

Stopwatch

Table 1: Table of results

Exp	. No. Vo	l. of HH (cm ³)	Vol. of TT (cm³) Vol. of Distill	ed water	(cm ³)	$ \text{Time (sec)} 1/t (s^{-1}) $
1	10	20	0	20	0.050		
2	10	15	5	25	0.040		
3	10	10	10	33	0.030		
4	10	5	15	50	0.020		

Questions

(a) Complete filling the table of results (Table 1). Done above.

(b) Write a balanced equation for reaction between TT and HH. $Na_2S_2O_3(aq) + 2HCl(aq) ----> 2NaCl(aq) + H_2O(l) + SO_2(g) + S(s)$

- (c) What is the reaction product which causes the solution to cloud the letter X? Sulphur (S)
- (d) How was the factor of concentration varied in this experiment? By diluting the sodium thiosulphate solution with different amounts of water while keeping the acid volume constant.
- (e) Plot a graph of 1/t against the volume of the thiosulphate.

(f) Use the graph to explain how variation of concentration affects the rate of chemical reaction. As the volume (and thus concentration) of thiosulphate increases, the rate of reaction (1/t) also increases, showing a direct relationship between concentration and reaction rate.

3. Sample S is a simple salt containing one cation and one anion. Carry out the experiments described below. Record your observations and inferences as shown in Table 2.

Table 2: Experimental results

S/n	•	ı .		
(a) Observe the appearance of sample S.			 White crys	-
Likely a salt				
(b) Place a spoonful of sample S in a test tube	e, add water a	nd shake to d	issolve.	Dissolved
completely Salt is soluble				
(c) Put a spatulaful of sample S in a test tube	and heat.		No vis	ible change
Thermally stable				
(d) Add three drops of sodium hydroxide sol	ution to the s	olid sample ir	n a test tube.	White
precipitate formed Presence of Pb ²⁺ io	on			
(e) Put a spatulaful of sample S in a dry test tub	e and add con	centrated sulp	huric acid. Warm	the mixture
and test for any gas evolved. Colourless gas with	h pungent sme	ell evolved R	elease of HCl gas	
(f) Put a spatulaful of sample S in a dry test t	ube and add o	concentrated s	ulphuric acid and	manganese
dioxide. Warm the mixture and test for any gas e	volved. Gree	nish yellow ga	as evolved	Presence
of chloride ion (Cl ⁻) confirmed				
(g) To a portion of the solution from (f) add aqu	eous silver nit	trate followed	by aqueous ammo	nia. White
precipitate soluble in ammonia Confirms pres	sence of Cl- io	n		

Conclusion:

- (a) The cation present in S is Pb2+ and the anion is Cl-
- (b) The name of sample S is lead(II) chloride
- (c) Write a balanced chemical equation for the reactions taking place in (c) and (d):
- (c) No chemical change observed (stable compound)
- (d) $PbCl_2(s) + 2NaOH(aq) \longrightarrow Pb(OH)_2(s) + 2NaCl(aq)$