THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2012

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following solutions:

FF: Containing 5.6 g of pure potassium hydroxide per 1 dm³ of solution

GG: Containing 6.0 g of impure sulphuric acid per 1 dm³ of solution

Methyl orange and phenolphthalein indicators

Ouestions

- (a) (i) What is the suitable indicator for the titration of the given solutions? Give a reason for your answer. Methyl orange is suitable because sulphuric acid is a strong acid and potassium hydroxide is a strong base, and methyl orange gives a sharp colour change in such titrations.
- (ii) Can litmus paper be used as an indicator in this experiment? Justify your answer.

No. Litmus paper only shows whether a solution is acidic or basic, but does not provide a sharp endpoint required in titration.

(iii) Explain how you will rinse the apparatus (burette and pipette) before doing the titration. Rinse the burette with the acid (GG) and the pipette with the base (FF) to avoid contamination or dilution that may alter concentration and accuracy.

(b) Write a balanced chemical equation for the reaction between FF and GG.

$$2KOH(aq) + H_2SO_4(aq) ----> K_2SO_4(aq) + 2H_2O(1)$$

(c) Titrate the acid (in a burette) against the base (in a conical flask) using two drops of your indicator and obtain three titre values.

Assume average volume of acid used is 25.00 cm³ for 25.00 cm³ of base.

- (d) (i) ___ cm³ of acid required ___ cm³ of base for complete reaction.
- 25.00 cm³ of acid required 25.00 cm³ of base for complete reaction.
- (d) (ii) Showing your procedures clearly, determine the percentage purity of sulphuric acid.

Molar mass $H_2SO_4 = 98$ g/mol

Moles of base = $(5.6 \div 56) = 0.1 \text{ mol in } 1 \text{ dm}^3$

Volume = $25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Moles in 25 cm³ = $0.1 \times 0.025 = 0.0025$ mol

Mole ratio H_2SO_4 : KOH = 1 : 2 \rightarrow Moles H_2SO_4 = 0.0025 \div 2 = 0.00125 mol

Mass = $0.00125 \times 98 = 0.1225$ g in 25 cm³ \rightarrow in 1000 cm³ = $(0.1225 \times 1000) \div 25 = 4.9$ g

Purity = $(4.9 \div 6.0) \times 100 = 81.7\%$

2. You are provided with the following materials:

SS: A solution of 0.1 M Na₂S₂O₃

PP: A solution of 2 M HCl

Distilled water

Stopwatch

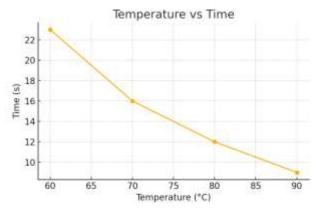

Thermometer Paper marked X

Table 1: Completion

Expe	eriment Te	mperature (°C) Time (s	s)
1	60	11		
2	50	15		
3	40	22		
4	Room t	emp 3	6	

Questions

- (i) Complete Table 1 done above.
- (ii) Write a balanced reaction equation for reaction between SS and PP. $Na_2S_2O_3(aq) + 2HCl(aq) ----> 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$
- (iii) Plot a graph of time against the temperature.

(iv) Why did the letter X disappear?

A precipitate of sulphur formed during the reaction, making the solution cloudy and obscuring the mark X.

(v) What conclusion can you draw from the results of this experiment?

As temperature increases, the rate of reaction increases (shorter time), indicating that temperature speeds up chemical reactions.

Sample Z is a simple salt containing one cation and one anion.

S/N Experiment	Observation	Inference	

a Appearance of sample Z	1	White crystalling	ne solid	Ionic compound
b Heat sample Z in a test tube		No gas or change Stable salt		
c(i) Add NaOH till in excess	'	White ppt, solul	ole in exces	ss Al ³⁺ suspected
c(ii) Add FeSO ₄ and conc. H ₂ SO ₄ dropwise NO ₃ - confirmed	down test tube w	vall	Brown rin	ng formed
\mid c(iii) \mid Add ammonia solution till in excess Al ³⁺ \mid		White ppt,	soluble in	excess Confirms
Conclusion				
(i) The cation in sample Z is Al3+ and anion is	NO ₃ -			
(ii) The name of sample Z is Aluminium nitra				
(iii) The chemical formula of sample Z is Al(l				
3. Substance V is a simple salt which contadescribed below. Record carefully your obserthe anion and cation present in sample V.			•	•
S/N Experiment	Observation	[Infe	erence
1 Observe the appearance of sample V 2 Put a little amount of sample V in a test tu Soluble salt	White cr	ystalline solid	Ion	nic salt
3 Heat a little amount of V in a dry test tub 4a Add dilute HCl and NaOH to 1st portio of Al ³⁺	_	e ipitate soluble i	•	•
4b Add ammonia to 2nd portion	White precipitate	e soluble in exc	ess Confi	rms Al³+
4c Add ammonium oxalate to 3rd portion				
5 Perform flame test			•	
Conclusion				
(i) The cation in sample V is Ca ²⁺				
(ii) The anion in sample V is Cl ⁻				
(iii) The chemical formula of V is CaCl ₂				
(iv) The name of compound V is Calcium chlo	oride			