THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2016

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

- 1. You are provided with the following:
- Q: Contains 36.5 g of HCl in 1 dm³ solution
- P: Contains 4.0 g of impure NH₄OH in 0.25 dm³ solution

(a)

- (i) If phenolphthalein were used instead of methyl orange, it would show a pink colour in basic solution and colourless in acidic solution. However, methyl orange is preferred because it changes colour sharply in strong acid-weak base titrations like HCl vs NH₄OH.
- (ii) Assume average titre volume of $Q = 25.0 \text{ cm}^3$
- 25.0 cm3 of Q required 25.0 cm3 of P
- (iii) HCl is monoprotic, NH4OH is monobasic
- (iv) Colour change: Yellow to orange/pink
- (b) Balanced equation:

$$HCl(aq) + NH_4OH(aq) \longrightarrow NH_4Cl(aq) + H_2O(l)$$

(c) Calculate the percentage by weight of the impurity in the ammonium hydroxide.

Molar mass of HCl = 36.5 g/mol

Moles of HCl = $36.5 \div 36.5 = 1 \text{ mol in } 1 \text{ dm}^3$

Volume used = $25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Moles used = $1 \times 0.025 = 0.025$ mol

 $NH_4OH = 0.025 \text{ mol}$

Mass of pure NH₄OH = $0.025 \times 35 = 0.875$ g

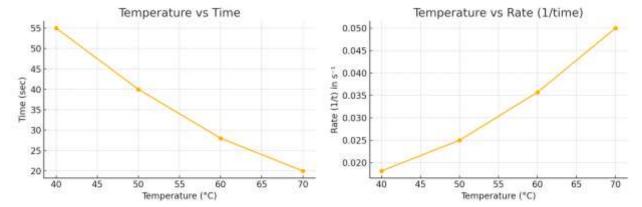
In 0.25 dm^3 of impure sample, total mass = 4.0 g

Percentage purity = $(0.875 \div 4.0) \times 100 = 21.88\%$

Percentage impurity = 100 - 21.88 = 78.12%

2. You are provided with:

BB: 0.25 M sodium thiosulphate


DD: 0.1 M HCl

(a) Table completed:

Temperature (°C) Time (sec) $1/\text{time (s}^{-1})$				
40	55	0.0182		
50	40	0.0250		
60	28	0.0357		
70	20	0.0500		

(b)(i) Room temperature ≈ 25 °C, assume time = 70 sec, rate = 0.0143 s⁻¹

(ii) graphs:

- (iii) The graph shows that rate increases as temperature increases.
- (c) Balanced ionic equation:

$$S_2O_3^{2-}(aq) + 2H^+(aq) ----> SO_2(g) + S(s) + H_2O(l)$$

- (d) 1/t represents the rate of reaction.
- (e) As temperature increases, the reaction rate increases due to increased kinetic energy and more frequent collisions.

3. Sample R qualitative analysis

S/N Experiment	Observation Inference
a Observe sample R	Blue crystals Presence of Cu ²⁺
b Heat sample	Turned black Formation of CuO
c Add HCl	Effervescence Presence of CO ₃ ²⁻
d Add H ₂ SO ₄	Effervescence CO ₃ ²⁻ confirmed
e(i) Add NaOH	Pale blue precipitate Cu ²⁺ present
e(ii) Add H2SO4 again	Effervescence Confirms CO ₃ ²⁻
e(iii) Add NH4OH	Blue precipitate Confirms Cu ²⁺
e(iv) Add FeSO4 then H2SO4	No change Fe not present
e(v) Add KI and cool	Brown solution formed Confirmed Cu ²⁺ with I ₂

Conclusion:

- (i) Cation in sample R is Cu²⁺
- (ii) Anion in sample R is CO₃²⁻
- (iii) Chemical formula of R is CuCO₃
- (iv) Reactions:
- (b) $CuCO_3(s)$ ----> $CuO(s) + CO_2(g)$
- (c) $CuCO_3(s) + 2HCl(aq) ----> CuCl_2(aq) + CO_2(g) + H_2O(l)$