THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2017

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following:

PP: A solution of 0.1 M hydrochloric acid

RR: A solution of 1.39 g of impure sodium carbonate anhydrous in 250 cm³ of solution

Indicator: Methyl orange

- (a)(i) Titrate solution PP against 25 cm³ of RR until the colour changed. Assume average titre volume was 24.50 cm³
- (ii) The colour changed because methyl orange turned from yellow to orange-red, indicating neutralization.
- (iii) The average titre volume was 24.50 cm³
- (iv) 24.50 cm³ of PP was required to neutralize 25.00 cm³ of RR
- (v) If sulphuric acid was used instead, the volume required would be half because H₂SO₄ is diprotic (releases two H⁺ ions per molecule), while HCl is monoprotic.
- (b) (i) Apparatus used to measure PP: 25 cm³ pipette
- (ii) It is best because it gives accurate, fixed volumes suitable for titration.
- (c) Balanced chemical equation:

$$Na_2CO_3(aq) + 2HCl(aq) ----> 2NaCl(aq) + H_2O(1) + CO_2(g)$$

(d)(i) Molarity of RR:

Moles of $HCl = 0.1 \times 0.0245 = 0.00245$ mol

Mole ratio Na_2CO_3 : HCl = 1:2

Moles of Na₂CO₃ = $0.00245 \div 2 = 0.001225$ mol

Volume of RR = $25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Molarity of RR = $0.001225 \div 0.025 = 0.049 \text{ mol/dm}^3$

(ii) Percentage purity of RR:

Moles in 250 cm³ = $0.049 \times 0.25 = 0.01225$ mol

Mass = $0.01225 \times 106 = 1.2985$ g

Actual mass = 1.39 g

Percentage purity = $(1.2985 \div 1.39) \times 100 = 93.38$ percent

- (e) Two applications of volumetric analysis:
- Used to determine concentration of unknown solutions
- Used in quality control for titrations in industries
- 2. (a) Completed Table 1:

Volume of E (cm ³) Volume of G (cm ³) Ti	
	-
25 0 20	
20 5 24	

15	10	30	
10	15	38	
5	20	50	

(b)

- (i) Plot of volume time graph is shared below.
- (ii) The graph shows that time increases as volume of E decreases, indicating slower reaction at lower concentrations.
- (c) Ionic equation:

$$S_2O_3^{2-}(aq) + 2H^+(aq) ----> SO_2(g) + S(s) + H_2O(l)$$

- (d) The letter X disappeared because sulphur formed in the reaction turned the solution cloudy, blocking the visibility of the cross.
- (e) Two uses of sulphur:
- Used in vulcanization of rubber
- Used in the manufacture of sulphuric acid
- 3. (a) Table 2

Experiment	Observation	Inference
Observe Q	Green crystalline solid	Transition metal salt
Add water	Dissolved, green solution	Soluble ionic compound
Add dilute HCl	Effervescence	CO ₃ ²⁻ present
Add conc H ₂ SO ₄	Effervescence	CO ₃ ²⁻ confirmed
Add NaOH	Green precipitate, insolu	ble Fe ²⁺ present
Add NH ₃	Green precipitate	Confirms Fe ²⁺
Add K ₃ Fe(CN) ₆	Deep blue precipitate	Fe ²⁺ confirmed
Add Pb ²⁺ + CH ₃ COOH	White precipitate	CO ₃ ²⁻ confirmed

- (b) Conclusion:
- (i) The cation in sample Q is Fe²⁺
- (ii) The anion in sample Q is CO₃²⁻
- (iii) The compound Q is FeCO₃
- (c) Reaction with HCl:

$$FeCO_3(s) + 2HCl(aq) ----> FeCl_2(aq) + CO_2(g) + H_2O(l)$$

(d) Three chemical properties of Fe²⁺:

- Forms green precipitate with NaOH
- Reacts with potassium hexacyanoferrate(III) to give a blue complex
- Oxidizes slowly to Fe³⁺ in air
- (e) Two uses of Q:
- Used in pigments and ceramics
- Used in synthesis of iron-based compounds