THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2018

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following:

X: 0.5 M sulphuric acid solution

- Y: Monovalent metal hydroxide made by dissolving 4.00 g of MOH in distilled water to make 1 dm³ solution
- (a)(i) The colour change at the end point was from yellow to orange or red (methyl orange indicator).
- (ii) 25.00 cm³ of X₁ was required to completely react with 25.00 cm³ of Y.
- (b) Write a balanced chemical equation for the reaction between X_1 and Y.

$$H_2SO_4(aq) + 2MOH(aq) ----> M_2SO_4(aq) + 2H_2O(1)$$

- (c) Calculate the following:
- (i) Molarity of $X_1 = 0.5$ M (already given)
- (ii) Molarity of Y:

Mole ratio = 1 mol H₂SO₄ reacts with 2 mol MOH

Moles of $H_2SO_4 = 0.5 \times 0.025 = 0.0125$ mol

Moles of MOH = $2 \times 0.0125 = 0.025$ mol

Volume of $Y = 25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Molarity of $Y = 0.025 \div 0.025 = 1.0 \text{ mol/dm}^3$

(iii) Atomic mass of M:

Moles of MOH in $1 \text{ dm}^3 = 1.0 \text{ mol}$

Mass = 4.00 g

Atomic mass = $4.00 \div 1.0 = 40$ g/mol

Metal M is potassium (K)

(d) Identify metal M and write its electronic configuration.

Metal M is potassium (K)

Electronic configuration: 2:8:9

(e) State two properties of each of X and Y.

X (sulphuric acid):

- Strong acid
- Turns blue litmus red

Y (potassium hydroxide):

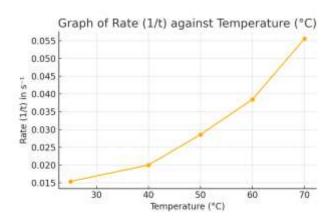
- Strong base
- Turns red litmus blue
- 2. You are provided with the following:

H₁: 0.25 M Na₂S₂O₃

H₂: 2 M HCl

Distilled water, stopwatch, thermometer

(a) Fill Table 1.


(b) Write a balanced equation for reaction between H₁ and H₂.

$$Na_2S_2O_3(aq) + 2HCl(aq) ----> 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$$

(c) Which product causes the solution to cloud the letter X?

Sulphur (S) is the product that caused the solution to become cloudy.

(d) Plot a graph of rate (1/t) against temperature.

(e) What conclusion can you draw from this experiment?

As temperature increased, the rate of reaction increased. This confirmed that temperature positively affects the rate of chemical reactions by increasing kinetic energy and frequency of collisions.

3. Sample N is a simple salt containing one cation and one anion.

S/N Experiments	Observation	Inference	
-			
a Appearance of solid sample	White crystalline solid	Ionic salt	
b Heated sample	No water droplets	No water of crystallization	
c Added dilute HCl to sample	Effervescence observed	Presence of carbonate (CO ₃ ²⁻)	
d Flame test	Brick-red flame	Calcium ion (Ca ²⁺)	
e(i) Added NaOH	White precipitate formed	Ca ²⁺ confirmed	
e(ii) Added MgSO4, then warm	ed White precipitate formed	Confirmed CO ₃ ²⁻ ion	

Conclusion:

- (i) The cation is Ca^{2+} and the anion is CO_3^{2-}
- (ii) The sample N is calcium carbonate
- (iii) The chemical reactions are:
- (b) CaCO₃(s) + heat ----> no change (heat-stable salt)
- (c) $CaCO_3(s) + 2HCl(aq) ----> CaCl_2(aq) + CO_2(g) + H_2O(l)$
- (iv) Uses of sample N:
- Used in manufacturing of cement
- Used to neutralize acidic soils