THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2019

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

- 1. You are required to determine the purity of an impure NaOH solution contaminated with NaCl by using pure HCl.
- (a) How much volume of the acid was required to neutralize completely 20 cm³ or 25 cm³ of the base?

Assume 25 cm³ of base was used and titre readings gave an average volume of acid as $20.0 \text{ cm}^3 = 0.020 \text{ dm}^3$.

(b) Write a balanced chemical equation for this reaction.

$$NaOH(aq) + HCl(aq) ----> NaCl(aq) + H2O(l)$$

(c) Calculate the molarity of the acid and that of the base.

Mass of HCl = 0.73 g Volume = 0.2 dm³ Molar mass of HCl = 36.5 g/mol Moles of HCl = $0.73 \div 36.5 = 0.02$ mol Molarity = $0.02 \div 0.2 = 0.1$ mol/dm³

Volume of acid used = $20.0~\text{cm}^3 = 0.020~\text{dm}^3$ Moles of HCl = $0.1 \times 0.020 = 0.002~\text{mol}$ From the reaction, moles of NaOH = moles of HCl = 0.002~molVolume of NaOH = $25~\text{cm}^3 = 0.025~\text{dm}^3$ Molarity of base = $0.002 \div 0.025 = 0.08~\text{mol/dm}^3$

(d) Calculate the percentage purity of the base (NaOH).

Volume = 0.25 dm^3 Moles = $0.08 \times 0.25 = 0.02 \text{ mol}$ Mass of pure NaOH = $0.02 \times 40 = 0.8 \text{ g}$ Mass of impure sample = 1.1 gPercentage purity = $(0.8 \div 1.1) \times 100 = 72.73$ percent

(e) What is the percentage by mass of NaCl?

Mass of impurity = 1.1 g
$$-0.8$$
 g = 0.3 g
Percentage by mass of NaCl = $(0.3 \div 1.1) \times 100 = 27.27$ percent

- 2. Sample V is a simple salt containing one cation and one anion. Carry out the experiments described and record observations and inferences.
- (a) Experimental Table

S/N Experiment	Observation	Inference
a Appearance of sample V	White crystalline solid	Sample was a typical ionic salt
b Added distilled water and warmed	l Dissolved completely	Sample was soluble in water
c Added concentrated H ₂ SO ₄	Effervescence observed	Presence of CO ₃ ²⁻ anion
d Heated strongly Residue remained white Stable salt, no water of crystallization or decomposition		
$\mid e(i) \mid Added \ NaOH \ in \ excess \ to \ solution \ \mid White \ precipitate \ formed, \ dissolved \ in \ excess \ \mid Presence \ of \ Zn^{2+}$		
e(ii) Added MgSO4 solution, warmed	White precipitate formed	Confirmed CO ₃ ²⁻ ion
e(iii) Added ammonia solution in exce	ess White precipitate dissolved	d Confirmed Zn ²⁺ ion

- (b) Conclusion
- (i) The cation in sample V is $Zn^{2\scriptscriptstyle +}$ and the anion is $CO_3{}^{2\scriptscriptstyle -}$
- (ii) The name of sample V is zinc carbonate
- (iii) The chemical formula of sample V is ZnCO₃
- (c) With the aid of a balanced ionic equation, explain the effect of the dilute HCl to the sample V in experiment (e).

$$ZnCO_3(s) + 2H^+(aq) ----> Zn^{2+}(aq) + CO_2(g) + H_2O(l)$$

Explanation: The dilute HCl reacted with zinc carbonate releasing carbon dioxide gas and forming soluble Zn^{2+} ions.