THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2B

CHEMISTRY 2B

(ACTUAL PRACTICAL B)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2003

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

- 1. You are provided with the following solutions:
- 1.1 Solution P containing 28.60 g per litre of impure sodium carbonate
- 1.2 Solution Q containing 0.20 mole of hydrochloric acid in a litre of solution
- 1.3 Methyl orange as an indicator

PROCEDURE

Put the acid solution in a burette. Pipette 25 cm³ of solution P into a titrating flask. Add a few drops of methyl orange indicator. Titrate solution P against the acid solution until the end point is reached. Repeat this procedure until three titre values are obtained and record your titration results in a tabular form as shown below:

(a)(i) Table of results:

Titration	Final reading (cm ³)	Initial reading (cm ³)	Volume used (cm ³)
Pilot	25.00	0.00	25.00
1	24.90	0.00	24.90
2	25.00	0.00	25.00
3	25.00	0.00	25.00

- (ii) Volume of pipette used = 25.00 cm^3
- (iii) The mean titre is = $(24.90 + 25.00 + 25.00) \div 3 = 24.97 \text{ cm}^3$
- (iii) Summary: 25.00 cm³ of solution P required 24.97 cm³ of solution Q for complete reaction
- (b) Write balanced equation for the above neutralization reaction

$$Na_2CO_3 + 2HC1 ----> 2NaC1 + H_2O + CO_2$$

- (c) Calculate the molarity of P:
- (i) in moles per litre

Molarity of $Q = 0.20 \text{ mol/dm}^3$

Volume of Q used = $24.97 \text{ cm}^3 = 0.02497 \text{ dm}^3$

Moles of HCl = $0.20 \times 0.02497 = 0.004994$ mol

From the balanced equation: 2 mol HCl react with 1 mol Na₂CO₃

Moles of Na₂CO₃ = $0.004994 \div 2 = 0.002497$ mol

Volume of P used = $25.00 \text{ cm}^3 = 0.02500 \text{ dm}^3$

Molarity of $P = 0.002497 \div 0.025 = 0.09988 \text{ mol/dm}^3$

(ii) in grams per litre

Molar mass of $Na_2CO_3 = 106$ g/mol

Concentration in $g/dm^3 = 0.09988 \times 106 = 10.59 g/dm^3$

(d)(i) Calculate the amount of impurity in g per litre

Mass of impure sodium carbonate = 28.60 g

Mass of pure sodium carbonate = 10.59 g

Impurity = 28.60 - 10.59 = 18.01 g

(ii) If this impurity was due to water of crystallization in the salt, calculate the number of moles of water in one mole of sodium carbonate crystals

Molar mass of impure salt = $28.60 \div 0.09988 = 286.37$ g/mol

Water of crystallization = 286.37 - 106 = 180.37 g

Number of moles of water = $180.37 \div 18 = 10.02 \approx 10$

So, number of water molecules = 10

 $Formula = Na_2CO_3 \cdot 10H_2O$

2. Sample R is a simple salt containing ONE cation and ONE anion. Carry out carefully the experiments described below and record all your observations and inferences in the table. Identify the cation and anion present in the sample.

Test Experiment Observation Inference
2.1 Appearance of R White crystalline solid Colourless ionic salt

- 2.2 Heat some of sample R in a hard glass test tube gently then strongly No gas evolved No water of crystallization
- 2.3 Add concentrated sulphuric acid on sample R

 limewater milky CO₃²⁻ present (CO₂ gas evolved)

 Effervescence, colourless gas turns
- 2.4 Dissolve some of R in water Clear solution Salt is soluble
- 2.5 Add NaOH dropwise and then in excess White precipitate formed, insoluble in excess Ca²⁺ likely
- 2.6 Add ammonium hydroxide dropwise and then in excess White precipitate formed, insoluble in excess Confirms Ca²⁺
- 2.7 Add potassium ferrocyanide to solution of R No visible reaction Confirms absence of Fe^{3+} , Pb^{2+}
- 2.8 Add freshly prepared FeSO₄ and conc. H₂SO₄ carefully No brown ring seen Confirms absence of NO₃⁻

Conclusion
Cation in R is Ca²⁺
Anion in R is CO₃²⁻
R is CaCO₃

out te X.	sts on X and make obs	ervations and inferences, hen	ce identify the a	nion and cation present in sa	mple		
Test	Experiment	Observation	I	Inference			
	Experiment Observation Inference						
	Heat a little of solid X nce of CO ₃ ²⁻ (CO ₂ gas)	X in a dry test tube Colourle	ss gas evolved tu	ırns limewater milky			
(c)	Dissolve solid X in di	stilled water and shake Col	ourless solution	formed Salt is soluble			
(e)		solution of $X \mid$ Effervescen ropwise and then in excess to n^{2+} present		Confirms CO ₃ ²⁻ X White precipitate,			
	-	pwise and then in excess to to for Zn^{2+}	he solution of X	White precipitate,			
	Add BaCl ₂ to solution ence of SO ₄ ²⁻	of X followed by dilute HC	1	No precipitate			
	Add AgNO3 to solution of Cl-, Br-, I-	on of X followed by HNO3		No precipitate			
	(i) $ Add Pb(NO_3)_2$ to solution of X $ White precipitate formed Confirms presence of CO_3^{2-}$						
	Flame test on solid X kali metal cation prese	nt	No charact	eristic flame colour			
Concl The c		n^{2+} and the anion present in Σ	α is CO₃²⁻				

3. Sample X contains ONE anion and ONE cation. Using systematic qualitative analysis procedures, carry