## THE UNITED REPUBLIC OF TANZANIA

#### NATIONAL EXAMINATIONS COUNCIL

### CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2B

#### **CHEMISTRY 2B**

#### (ACTUAL PRACTICAL B)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2013

#### **Instructions**

- 1. This paper consists of two questions.
- 2. Answer all questions.



- 1. You are provided with the following solutions:
- T: Containing 1.825 g of hydrochloric acid in 0.50 dm³ of solution
- Z: Containing 3.575 g of pure hydrated sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>·xH<sub>2</sub>O per 0.25 dm³ of solution Methyl orange indicator

#### **Ouestions**

(a) Is the use of phenolphthalein indicator for this experiment as suitable as the methyl orange? Give a reason for your answer.

No, phenolphthalein is not suitable. Methyl orange is more appropriate because it gives a clearer endpoint in strong acid vs weak base titrations, such as HCl and sodium carbonate.

(b) Titrate the acid (in a burette) against the base (in a conical flask) using two drops of indicator and obtain three titre values.

Assume average titre volume of T used =  $25.00 \text{ cm}^3$  for  $25.00 \text{ cm}^3$  of Z.

- (c) (i)  $\_\_$  cm<sup>3</sup> of acid required  $\_\_$  cm<sup>3</sup> of base for complete reaction.
- 25.00 cm<sup>3</sup> of acid required 25.00 cm<sup>3</sup> of base for complete reaction.
- (c) (ii) With state symbols, write a balanced molecular equation and the corresponding ionic equation for the reaction between T and Z.

Molecular: 
$$Na_2CO_3(aq) + 2HCl(aq) ----> 2NaCl(aq) + CO_2(g) + H_2O(l)$$
  
Ionic:  $CO_3^{2-}(aq) + 2H^+(aq) ----> CO_2(g) + H_2O(l)$ 

(d) Showing your procedures clearly, determine the value of x in the formula  $Na_2CO_3 \cdot xH_2O$  and hence name the compound.

Volume of acid =  $25.00 \text{ cm}^3 = 0.025 \text{ dm}^3$ 

Molar mass of HCl = 36.5 g/mol

Moles of HCl =  $(1.825 \div 36.5) = 0.05 \text{ mol in } 0.5 \text{ dm}^3 \rightarrow 0.1 \text{ mol/dm}^3$ 

Moles of acid =  $0.1 \times 0.025 = 0.0025$  mol

Mole ratio HCl:  $Na_2CO_3 = 2: 1 \rightarrow Moles Na_2CO_3 = 0.0025 \div 2 = 0.00125 \text{ mol}$ 

Mass in 25.00 cm<sup>3</sup> of  $Z = (3.575 \div 250) \times 25 = 0.3575$  g

Molar mass =  $0.3575 \div 0.00125 = 286 \text{ g/mol}$ 

Molar mass of Na<sub>2</sub>CO<sub>3</sub> =  $106 \text{ g/mol} \rightarrow 286 - 106 = 180$ 

 $180 \div 18 = 10$ 

x = 10, compound is sodium carbonate decahydrate (Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O)

2. You are provided with the following:

P<sub>1</sub>: 0.5 mol/dm<sup>3</sup> sodium thiosulphate

P<sub>2</sub>: 0.1 mol/dm<sup>3</sup> hydrochloric acid

Distilled water

Stop watch

Plain paper

# Table 1 Completion

- (b) Why did the solution become opaque after mixing P<sub>1</sub> and P<sub>2</sub>? Because sulphur precipitate was formed, making the solution cloudy and obscuring the mark.
- (c) With state symbols, write the ionic equation for the reaction.  $S_2O_3^{2-}(aq) + 2H^+(aq) ----> S(s) + SO_2(g) + H_2O(l)$
- (d) List four factors which can affect the reaction in (c).
- Concentration of reactants
- Temperature
- Nature of the acid used
- Presence of catalyst
- (e) Plot a graph of volume P<sub>1</sub> against time.
- (f) Inspect your graph and comment on the effect of concentration on the rate of chemical reaction. As the volume of  $P_1$  (thiosulphate) increases, the reaction time decreases. This shows that the rate of reaction increases with concentration.

Sample N contains one cation and one anion. Using systematic qualitative analysis procedures, identify the cation and anion.

| S/n   Experiment                               | Observation                  | Inference                       |  |
|------------------------------------------------|------------------------------|---------------------------------|--|
|                                                |                              |                                 |  |
| a   Observe appearance                         | White crystalline solid      | Ionic salt                      |  |
| b   Add NaOH till excess                       | White ppt, soluble in excess | ss   Zn <sup>2+</sup> suspected |  |
| c   Add NH <sub>3</sub> till excess            | White ppt, soluble in excess | ss   Confirms Zn <sup>2+</sup>  |  |
| d   Add AgNO <sub>3</sub> and HNO <sub>3</sub> | White ppt, soluble in NH3    | Confirms Cl <sup>-</sup>        |  |

#### Conclusion

- (i) The cation present in sample N is Zn<sup>2+</sup>
- (ii) The anion present in sample N is Cl<sup>-</sup>