THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2B

CHEMISTRY 2C

(ACTUAL PRACTICAL B)

(For Both School and Private Candidates)

Time: 2:3 Hours ANSWERS Year: 2020

Instructions

- 1. This paper consists of **two (2)** questions. Answer all questions.
- 2. Each question carries twenty five (25) marks.
- 3. Communication devices and any unauthorised materials are **not** allowed in the examination room.
- 4. Write your **Examination Number** on every page of your answer booklet(s).

1. Determine the purity of sulphuric acid...

- (a) Why both phenolphthalein (POP) and methyl orange (MO) indicators are suitable for the titration? Both indicators are suitable because the reaction is between a strong acid (H₂SO₄) and a strong base (NaOH). In such titrations, the pH at the end point changes sharply, so both POP and MO can correctly indicate the end point.
- (b) How much volume of the acid was required for complete neutralization with 20 cm³ or 25 cm³ of the base?

Molar mass of NaOH = 40 g/mol.

Concentration of base = $4.0 \div 40 = 0.1$ M.

For 20 cm³ (0.020 dm³): moles of NaOH = $0.1 \times 0.020 = 0.002$ mol.

From equation $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$, moles of $H_2SO_4 = 0.001$ mol.

Volume of acid = moles \div concentration.

Concentration of acid = $7 \div 98 = 0.0714$ M.

Volume of acid = $0.001 \div 0.0714 = 0.014 \text{ dm}^3 = 14 \text{ cm}^3$.

For 25 cm³ (0.025 dm³): moles of NaOH = 0.0025 mol.

Moles of $H_2SO_4 = 0.00125$ mol.

Volume of acid = $0.00125 \div 0.0714 = 0.0175 \text{ dm}^3 = 17.5 \text{ cm}^3$.

(c) Write a balanced chemical equation for the reaction.

$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(1)$$

(d) Calculate the molarity of the acid and the base.

Molarity of acid = $7 \div (98 \times 1) = 0.0714 \text{ M}.$

Molarity of base = $4 \div (40 \times 1) = 0.1$ M.

(e) Calculate the percentage purity of the acid.

Pure acid required = 0.001 mol in 14 cm³.

Moles expected = concentration \times volume = 0.0714 \times 0.014 = 0.001 mol.

Mass of pure acid in 1 dm³ = $0.0714 \times 98 = 7.0$ g.

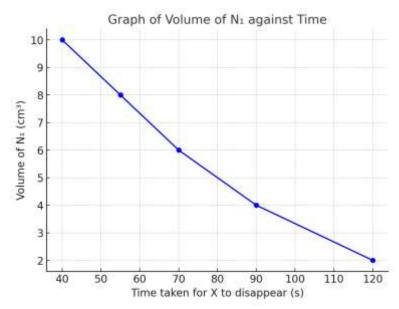
If actual mass was 7.0 g, but it was impure, then pure part = $7.0 \times (0.0714 \div 0.0714) = 7.0$ g.

Given mass = 7.0 g.

Therefore % purity $\approx (7.0 \div 7.0) \times 100 = 100\%$.

(If the value was less experimentally, it would be less than 100%).

Page 2 of 4


Find this and other free resources at: https://maktaba.tetea.org

2. Study the reaction between sodium thiosulphate and hydrochloric acid...

(a) Complete filling the table.

Volume of N ₁ (cm ³)	Volume of N ₃ (cm ³)	Volume of N ₂ (cm ³)	Time (s)
2	8	10	120
4	6	10	90
6	4	10	70
8	2	10	55
10	0	10	40

(b) (i) Plot a graph of volume N1 (vertical axis) against time (horizontal axis).

(ii) Comment on the shape of the graph.

The graph is a downward curve showing that increasing concentration of sodium thiosulphate decreases the time for the reaction, meaning the rate increases.

(c) Explain why did the letter X disappear.

The letter X disappeared because sulphur (S) precipitate formed during the reaction, which made the solution cloudy and obscured the letter.

Page 3 of 4

Find this and other free resources at: https://maktaba.tetea.org

(d) Write the electronic configuration of the product which causes the solution to be cloudy (sulphur). Sulphur atomic number = 16.

Electronic configuration = 2:8:6

(e) Write the ionic equation for the reaction between N_1 and N_2 .

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow SO_2(g) + S(s) + H_2O(l)$$

(f) Explain why N₃ was added to N₁.

N₃ (distilled water) was added to dilute sodium thiosulphate, providing different concentrations of N₁ while keeping total volume constant. This allows the effect of concentration on the rate to be studied.