THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2C

CHEMISTRY 2C

(ACTUAL PRACTICAL C)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2010

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following:

B1: a solution made by dissolving 21.2 g of a metal carbonate in 1000 cm³ of solution

B2: an acid which contains 3.6 g of HCl per litre of solution

B3: Methyl orange indicator

Procedure

Pipette 25.0 cm³ of B1 into a clean conical flask and add 2–3 drops of B3. Put B2 into the burette. Titrate the solution B1 against B2. The reaction equation is given as:

$$X_2CO_3 + 2HC1 ----> 2XC1 + H_2O + CO_2$$

The end point is when you get a colourless solution. Note the burette reading. Repeat the procedure to obtain three more readings and record the results as in the following table.

(a)

(i) Burette readings

Titration	Final volume (cm³)	Initial volume (cm³)	Volume used (cm³)
Pilot	24.90	0.00	24.90
1	25.00	0.00	25.00
2	24.80	0.00	24.80
3	24.80	0.00	24.80

- (ii) The volume of the pipette used is 25.00 cm³
- (iii) 25.00 cm³ of B1 reacted completely with 24.87 cm³ of B2
- (b) Calculate the mass concentration of B1 in grams per litre.

Mass of solute used = $21.2 \text{ g in } 1000 \text{ cm}^3$

Mass concentration = 21.2 g/dm^3

(c)

(i) Molarity of B1

Molar mass of $X_2CO_3 = M$ (to be found later in d)

Let's first find moles of HCl in 24.87 cm³

Mass of HCl in $1 \text{ dm}^3 = 3.6 \text{ g}$

Molar mass of HCl = 36.5 g/mol

Moles = $3.6 \div 36.5 = 0.09863 \text{ mol/dm}^3$

Moles in 24.87 cm³ = $0.09863 \times 0.02487 = 0.002454$ mol

From equation: 2 mol HCl reacts with 1 mol X₂CO₃

So moles of $X_2CO_3 = 0.002454 \div 2 = 0.001227$ mol

Volume of B1 used = $25.00 \text{ cm}^3 = 0.025 \text{ dm}^3$

Molarity = $0.001227 \div 0.025 = 0.04908 \text{ mol/dm}^3$

(ii) Molarity of B2

Already calculated above: 0.09863 mol/dm³

(d) Calculate the relative formula mass of X₂CO₃

Mass in $1 \text{ dm}^3 = 21.2 \text{ g}$

Moles = 0.04908 mol

Molar mass = $21.2 \div 0.04908 = 432.1$

$$X_2CO_3 = 2X + 12 + 48 = 2X + 60$$

$$2X + 60 = 432.1$$

$$2X = 432.1 - 60 = 372.1$$

$$X = 186.05$$

So element X is likely barium (Ba = 137), making compound BaCO₃ impossible, but the value is too high So recheck: if 21.2 g gives 0.04908 mol then molar mass = 432.1 g/mol

Which fits for compound with two heavy atoms (e.g., Pb or Ba)

Assuming approximate value, compound could be Pb₂CO₃

$$Pb = 207$$
, $Pb_2CO_3 = 207 \times 2 + 60 = 474$ g/mol (close enough)

So
$$X = Pb$$

Therefore, metal carbonate is Pb₂CO₃

- 2. You are provided with substance W. Substance W contains one cation and one anion. Carry out the following experiments on W and identify the cation and anion. Record all your observations and appropriate inferences in the space as shown in the following Table:
- (a) Appearance of sample W

Observation: White crystalline solid Inference: Colourless ionic compound

(b) Heat a little of sample W and identify the gas given out

Observation: Colourless gas evolved that turns limewater milky

Inference: CO2 gas released; indicates presence of carbonate ion

(c) To a little sample W add dilute HCl

Observation: Effervescence, gas evolved turns limewater milky

Inference: CO₃²⁻ confirmed

- (d) Dissolve W in water. Divide the solution into four portions and do the following:
- (i) Add silver nitrate till excess to the first portion

Observation: White precipitate forms

Inference: Cl⁻ present

(ii) Add NaOH till excess to the second portion

Observation: White precipitate, soluble in excess

Inference: Zn²⁺ present

(iii) Add MgSO₄ till excess to the third portion

Observation: No precipitate

Inference: No SO₄²⁻

(iv) Add NH₄OH till excess to the fourth portion Observation: White precipitate, soluble in excess

Inference: Zn²⁺ confirmed

Conclusion

- (a)
- (i) The cation in substance W is Zn²⁺ and the anion is CO₃²⁻
- (ii) Substance W is zinc carbonate (ZnCO₃)
- (b) Write balanced chemical equations for the reaction taking place in:
- (c) $ZnCO_3 + 2HCl ----> ZnCl_2 + CO_2 + H_2O$
- (d)(ii) $Zn^{2+} + 2OH^{-} ----> Zn(OH)_{2}(s); Zn(OH)_{2} + 2OH^{-} ----> [Zn(OH)_{4}]^{2-}$
- $(d)(iv)\ Zn^{2+} + 2NH_3 + 2H_2O ----> Zn(OH)_2(s) + 2NH_4^+;\ Zn(OH)_2 + 4NH_3 ----> [Zn(NH_3)_4]^{2+} + 2OH^-$
- 3. You are provided with substance R. Substance R contains one cation and one anion. Analyse substance R systematically and identify the anion and the cation. Present your results as shown in the following table:

Experiment: Add NaOH

Observation: Reddish-brown precipitate

Inference: Fe³⁺ present

Experiment: Add BaCl₂

Observation: White precipitate that persists in dilute HNO₃

Inference: SO₄²⁻ confirmed

Conclusion

- (a) The cation in R is Fe³⁺ and the anion is SO₄²⁻
- (b) The compound R is iron(III) sulfate, Fe₂(SO₄)₃