THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2C

CHEMISTRY 2C

(ACTUAL PRACTICAL C)

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2013

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.

1. You are provided with the following solutions:

FF: Containing 5.6 g of pure potassium hydroxide per 1 dm³ of solution

GG: Containing 6.0 g of impure sulphuric acid per 1 dm³ of solution

Methyl orange and phenolphthalein indicators

Ouestions

- (a) (i) What is the suitable indicator for the titration of the given solutions? Give a reason for your answer. Methyl orange is suitable because sulphuric acid is a strong acid and potassium hydroxide is a strong base, and methyl orange gives a sharp colour change in such titrations.
- (ii) Can litmus paper be used as an indicator in this experiment? Justify your answer.

No. Litmus paper only shows whether a solution is acidic or basic, but does not provide a sharp endpoint required in titration.

(iii) Explain how you will rinse the apparatus (burette and pipette) before doing the titration. Rinse the burette with the acid (GG) and the pipette with the base (FF) to avoid contamination or dilution that may alter concentration and accuracy.

(b) Write a balanced chemical equation for the reaction between FF and GG.

$$2KOH(aq) + H_2SO_4(aq) ----> K_2SO_4(aq) + 2H_2O(1)$$

(c) Titrate the acid (in a burette) against the base (in a conical flask) using two drops of your indicator and obtain three titre values.

Assume average volume of acid used is 25.00 cm³ for 25.00 cm³ of base.

- (d) (i) ___ cm³ of acid required ___ cm³ of base for complete reaction.
- 25.00 cm³ of acid required 25.00 cm³ of base for complete reaction.
- (d) (ii) Showing your procedures clearly, determine the percentage purity of sulphuric acid.

Molar mass $H_2SO_4 = 98$ g/mol

Moles of base = $(5.6 \div 56) = 0.1 \text{ mol in } 1 \text{ dm}^3$

Volume = $25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Moles in 25 cm³ = $0.1 \times 0.025 = 0.0025$ mol

Mole ratio H_2SO_4 : KOH = 1 : 2 \rightarrow Moles H_2SO_4 = 0.0025 \div 2 = 0.00125 mol

Mass = $0.00125 \times 98 = 0.1225$ g in 25 cm³ \rightarrow in 1000 cm³ = $(0.1225 \times 1000) \div 25 = 4.9$ g

Purity = $(4.9 \div 6.0) \times 100 = 81.7\%$

2. You are provided with the following materials:

SS: A solution of 0.1 M Na₂S₂O₃

PP: A solution of 2 M HCl

Distilled water

Stopwatch

Thermometer Paper marked X

Table 1: Completion


Questions

|4

(i) Complete Table 1 — done above.

| Room temp | 36

- (ii) Write a balanced reaction equation for reaction between SS and PP. $Na_2S_2O_3(aq) + 2HCl(aq) ----> 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$
- (iii) Plot a graph of time against the temperature.

(iv) Why did the letter X disappear?

A precipitate of sulphur formed during the reaction, making the solution cloudy and obscuring the mark X.

(v) What conclusion can you draw from the results of this experiment?

As temperature increases, the rate of reaction increases (shorter time), indicating that temperature speeds up chemical reactions.

2. Sample Z is a simple salt containing one cation and one anion.

S/N Experiment	Observation	Inference
a Appearance of sample Z	White crystalline solid	Ionic compound
b Heat sample Z in a test tube	No gas or change	Stable salt
c(i) Add NaOH till in excess	White ppt, soluble in ex	cess Al ³⁺ suspected
c(ii) Add FeSO4 and conc. H2SO4 dropwise down	test tube wall Brown ring	g formed NO3- confirmed
c(iii) Add ammonia solution till in excess	White ppt, soluble in exc	ess Confirms Al ³⁺

Conclusion

- (i) The cation in sample Z is Al^{3+} and anion is NO_{3^-}
- (ii) The name of sample Z is Aluminium nitrate
- (iii) The chemical formula of sample Z is Al(NO₃)₃