THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2C

CHEMISTRY 2C

(ACTUAL PRACTICAL C)

(For Both School and Private Candidates)

Time: 2:3 Hours ANSWERS Year: 2020

Instructions

- 1. This paper consists of two (2) questions. Answer all questions.
- 2. Each question carries **twenty five (25)** marks.
- 3. Communication devices and any unauthorised materials are **not** allowed in the examination room.
- 4. Write your **Examination Number** on every page of your answer booklet(s).

1. Determine an unknown univalent element in a carbonate...

(a) Calculate the average titre volume.

Suppose three titre readings obtained were 24.6, 24.5 and 24.7 cm³.

Average titre = $(24.6 + 24.5 + 24.7) \div 3 = 24.6 \text{ cm}^3$.

(b) Find the volume of the acid which was required to complete neutralization.

The average titre volume (24.6 cm³) of nitric acid was required to neutralize 25 cm³ of carbonate solution.

(c) Write balanced chemical equation for the reaction.

$$X_2CO_3(aq) + 2HNO_3(aq) \rightarrow 2XNO_3(aq) + H_2O(1) + CO_2(g)$$
.

(d) Calculate the molarities of the acid and base.

For HNO₃:

Mass given = $12.6 \text{ g in } 1 \text{ dm}^3$.

Molar mass = 63 g/mol.

Moles =
$$12.6 \div 63 = 0.2 \text{ mol/dm}^3$$
.

For X₂CO₃:

Mass =
$$2.65$$
 g in 250 cm³ = 10.6 g in 1 dm³.

Molar mass = unknown(M).

Molarity = $10.6 \div M \text{ mol/dm}^3$.

From titration:

Moles HNO₃ in 24.6 cm³ =
$$0.2 \times 24.6 \div 1000 = 0.00492$$
 mol.

Mole ratio $HNO_3:X_2CO_3 = 2:1$.

So moles of
$$X_2CO_3$$
 in 25 cm³ = 0.00492 ÷ 2 = 0.00246 mol.

Molarity of base =
$$0.00246 \times (1000 \div 25) = 0.0984 \text{ mol/dm}^3$$
.

(e) Determine the molar mass of the univalent element carbonate and name of the univalent element.

Molar mass =
$$10.6 \div 0.0984 = 107.7 \text{ g/mol} \approx 108 \text{ g/mol}$$
.

$$X_2CO_3 = (2M + 60).$$

So
$$2M + 60 = 108$$
.

$$2M = 48$$
.

M = 24.

Univalent element = Sodium (Na).

(f) Write the chemical formula of the univalent element carbonate.

The carbonate is Na₂CO₃.

2. Study the reaction between sodium thiosulphate and hydrochloric acid at different temperatures...

(a) Complete filling the table.

Volume of A ₁ (cm ³)	Volume of A ₂ (cm ³)	Temperature of A ₁ (°C)	Time (s)
30	30	40	140
30	30	50	110
30	30	60	80
30	30	70	60
30	30	80	45

(ii) State what does the shape of the graph indicate.

It indicates that the volume of A₁ was kept constant while time varied with temperature.

(c) Give reason why did the letter X disappear.

It disappeared because sulphur precipitate formed during the reaction made the solution cloudy.

(d) Write the electronic configuration of the product which causes the solution to be cloudy (sulphur). Sulphur atomic number = 16.

Electronic configuration = $1s^2 2s^2 2p^6 3s^2 3p^4$.

(e) Write the ionic equation for the reaction between N_1 and N_2 .

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow SO_2(g) + S(s) + H_2O(1).$$

(f) Plot a graph of volume of A_1 against the rate of the reaction.

Since volume is constant, graph is a horizontal line.

(g) State why N₃ was added to N₁.

 N_3 (distilled water) was added to dilute sodium thiosulphate solution to vary its concentration while keeping the total volume constant.