THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

082

ELECTRICAL ENGINEERING SCIENCE

(For both School and Private Candidates)

Time: 3 Hours

Friday, 8th October 2010 p.m.

Instructions

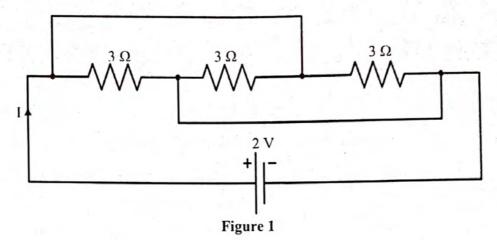
- This paper consists of sections A, B and C.
- Answer all questions in sections A and B and three (3) questions from section C.
- Calculators are not allowed in the examination room.
- 4. Cellular phones are not allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).
- 6. Whenever necessary use the following constants Permitivity of free space, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}.$

Resistivity of copper may be taken as 1.7 $\mu\Omega$.mm

Specific heat capacity of water = 4.18 kJ/kg⁰C

1 Faraday = 96,500 Coulombs.

1 hp = 746 Watts.


This paper consists of 6 printed pages.

uk print

SECTION A (10 Marks)

Answer all questions in this section.

- 1. For each of items (i) (x) choose the correct answer from among the given alternatives and write its letter beside the item number.
 - (i) For the circuit shown in Figure 1, what will be the current, I flowing through the circuit?

- A $\frac{1}{2}$ A
- B 1A
- C 2A
- D 4A
- E $\frac{1}{4}$ A.
- (ii) Which one of the following is not a good material property for an electric contact?
 - A High melting point
 - B Good thermal conductivity
 - C High resistance to erosion
 - D High elasticity
 - E High resistivity.
- (iii) For a shunt generator, which loss is considered as constant?
 - A Copper loss
 - B Eddy current
 - C Hysterisis loss
 - D Friction loss
 - E Mechanical loss.

Which of the following expressions is correct for the series reactance (iv) X_{CS}, if three capacitors C1, C2 and C3 are connected in series?

A
$$\frac{1}{X_{CS}} = \frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \frac{1}{X_{C3}}$$

B
$$X_{CS} = X_{C1} + X_{C2} + X_{C3}$$

B
$$X_{CS} = X_{C1} + X_{C2} + X_{C3}$$

C $X_{CS} = \frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \frac{1}{X_{C3}}$

$$D X_{CS} = \frac{1}{X_{C1} + X_{C2} + X_{C3}}$$

E
$$\frac{1}{X_{cs}} = \frac{1}{\frac{1}{X_{c1}} + \frac{1}{X_{c2}} + \frac{1}{X_{c3}}}$$
.

- What will be the efficiency when the transformer operates at unity (v) power factor and 60 % of full load?
 - 91.8 %
 - B 93.3 %
 - C 96.5 %
 - D 99 %
 - E 99.4 %.
- Which of the following is a factor whereby the level of illumination on a (vi) surface does not depend on?
 - A Candle power of the source
 - B Distance from the source
 - C Type of reflector used
 - D Increase glass shell diameter
 - E Increase the supply voltage.
- A bridge used for measurement of capacitance is (vii)
 - wheatstone bridge A
 - B wein bridge
 - C max well bridge
 - schearing bridge D
 - E anderson bridge.
- Polarization in simple cells refers to (viii)
 - giving polarities to cells A
 - supplying large amount of energy B
 - C insulating the anode
 - D destroying the cell
 - E insulating the cathode.

- (ix) A generator can be described as a machine which converts
 - A heat energy into electrical energy
 - B an electrical energy into mechanical energy
 - C solar energy into electrical energy
 - D mechanical energy into electrical energy
 - E chemical energy into electrical energy.
- (x) The common effect of an electric current in a day to day domestic use is
 - A luminous
 - B chemical
 - C heat
 - D magnetic
 - E temperature.

SECTION B (30 Marks)

Answer all questions in this section.

- 2. (a) State Coulomb's law.
 - (b) Two point charges 10 μ C and 20 μ C are placed at a distance of 30 cm apart in a medium of $\epsilon_r = 6$. Find the force between them.
 - (c) If the charges in 2 (b) above are placed in air, what will be the force between them?
- State Faraday's laws of electromagnetic induction.
- 4. (a) Define the term 'resistance' as used in electric circuit.
 - (b) A d.c arc has a voltage current relation given by $V = 20 + \frac{40}{I}$, is connected in series with a resistor, R. The total voltage applied is 120 V. If the voltage across the arc is half the voltage across the resistor, find the value of the resistor.
- 5. Find an expression for the current when a voltage $E = 283 \sin 100 \pi t$ is applied to a coil having $R = 50 \Omega$ and L = 0.159 H.
- 6. Explain four (4) indicators which show that a cell is fully charged.

1

- (a) Give three (3) differences between lap winding and wave winding as used in d.c generator.
 - (b) The induced e.m.f in a d.c generator running at 2500 r.p.m is 500 V. Calculate the induced e.m.f, when it runs at 1000 r.p.m.
- 8. A 230 V, 2 hp d.c motor drives a pump. The input power to the motor is 1700 W. Determine the current taken by the motor and efficiency of the motor.
- 9. A moving coil instrument gives full-scale deflection with 25 mA. The resistance of the coil is 5 Ω . It is required to convert this meter into an ammeter to read up to 5 A. Find the:
 - (a) Resistance of the shunt to be connected in parallel with the meter.
 - (b) Value of the series resistance for the above meter to read up to a voltage of 20 V.
- 10. Mention three (3) properties of a good illumination.
- 11. Give two (2) factors which determine the heat gained by a body when there is a temperature change.

SECTION C (60 Marks)

Answer three (3) questions from this section.

- 12. (a) Define the term 'capacitance' of a capacitor.
 - (b) Two capacitors A and B are connected in series across a 200 V d.c supply. The p.d across A is 120 V. When a capacitor of 3 μF is connected in parallel with B the p.d across A is increased to 140 V. Calculate the capacitance of A and B.
- 13. (a) Define the following terms.
 - (i) Rectifier
 - (ii) Filter
 - (b) A half wave rectifier is connected in series with load resistor of 14 Ω to an a.c supply of 20 volts r.m.s value. The rectifier may be taken as having a constant resistance of 1.5 Ω in the forward direction while the reverse current being zero. Calculate the average and peak values of the currents in the load.

5

- 14. The total current taken by a number of identical single-phase motors is 200 A with a power factor of 0.5, when their capacitors are out of circuit. Calculate the:
 - (a) Total current when the power factor is brought to unity by switching in the capacitors.
 - (b) Total current and power factor when 50 % of the motors are switched off with the capacitors still in circuit.In each condition illustrate your answer by means of a phasor diagram.
- 15. (a) Define 'power factor' of a circuit.
 - (b) A delta connected load consists of a resistance of 10 Ω and a capacitance of 100 μF in each phase. A supply of 410 V at 50 Hz is applied to the load. Find the line current, power factor and power consumed by the load.
- 16. (a) What are the three (3) means of heat transfer?
 - (b) State three (3) types of electric heaters.
 - (c) An immersion heater rated at 4 kilowatts is used to heat a tank containing 200 litres of water. If the overall efficiency is 80%, determine the time taken to increase the temperature of the water from 12°C to 90°C. One litre of water has a mass of one kilogram.