THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

082

ELECTRICAL ENGINEERING SCIENCE

(For Private Candidates Only)

Time: 3 Hours

Friday, 28th November 2014 a.m.

Instructions

- 1. This paper consists of sections A, B and C.
- 2. Answer all the questions in sections A and B and three (3) questions from section C.
- 3. Non programmable calculators may be used.
- 4. Cellular phones are **not** allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).

Page 1 of 5

csee-2014

SECTION A (10 Marks)

Answer all questions in this section.

	e its letter beside the item number in the answer booklet provided.
(i)	The magnitude of the induced e.m.f in a conductor depends on the A amount of the flux cut B amount of the flux linkage C rate of change of flux linkage D magnetic field strength E flux density of the magnetic field.
(ii)	The SI unit of illuminance is A lumen B cd/m ² C lumen/m ² D candela E lumen/watt.
(iii)	If 0.0006 microfarad is converted to pico farads, the result will be A 0.0006x10 ⁻⁶ pF B 0.0006x10 ⁻¹³ pF C 0.0006x10 ⁻¹² pF
	D $0.0006 \times 10^{-9} \text{pF}$ E $0.0006 \times 10^{6} \text{pF}$.
(iv)	Which is the lightest atom particle when compared to others? A electrons B nucleus C molecule D protons E neutrons.
(v)	What will happen if an ammeter is used as a voltmeter?
	A It will indicate higher reading B It will indicate no reading
	C It will indicate medium reading D It will burn out
	E It will give extremely low reading.
(vi)	The frequency of rotor current in a 6-pole, 50 Hz, 3-phase induction motor running 950 r.p.m. is
	A 2.5 Hz B 1.5 Hz C 5 Hz D 0.05 Hz E 95 Hz.
(vii)	Digital instruments are those which
	A have numerical readout B use LED or LCD displays
	C have a circuitry of digital design E use deflection type meter movement. D contain electronic device
(viii)	The deflection sensitivity of a cathode ray tube depends inversely on the A deflecting voltage B length of the vertical deflection plates
	A deflecting voltage
	C separation between Y-plates D distance between screen and deflecting plate E separation between X-plates.
(iv)	Which of the following frequencies has got longest period? A 1 Hz B 10 Hz C 1 kHz D 10 kHz E 100 kH
(ix)	A 1 Hz B 10 Hz C 1 kHz D 10 kHz E 100 kH

(x) The voltage of the electric system connected in delta is given by

A
$$\sqrt{V_L} = 3 V_{PH}$$

$$V_L = V_{pp}$$

$$C V_p = \sqrt{V_L}$$

D $V_L = \sqrt{3} V_{PH}$

$V_p = 3 V_L$.

SECTION B (30 Marks)

Answer all questions in this section.

- The equation for an alternating current is given by $i = 28.28 \sin (314t + 30^{\circ}) A$. Find its r.m.s value and frequency.
- 3. Figure 1 shows an electric circuit in which some of the quantities are represented by numbers, others by letters. Calculate the value of X and R.

Figure 1

- An eight pole lap connected armature has 96 slots with 6 conductors per slot and is driven at 4. 25/3 rev/sec. The useful flux per pole is 0.09 Wb. Calculate the generated e.m.f.
- Find the heat energy required to raise the temperature of 0.068 m³ of water from 18°C to 80°C. The mass of 1 m³ of water is 10³ kg and the specific heat capacity of water is 4187J per kg⁰C.
- An electronic beam has a velocity of 10⁷ m/s when enters a magnetic field perpendicular to the 6. direction of the flux. If the axial length of the magnetic field is 2 cm. Calculate the
 - radius of the curvature of the electron path in the magnetic field.
 - angle through which the electron is deflected. Assume $e/m = 1.76 \times 10^{11} \text{ C/kg}$.
- Mention six methods of identifying conductors. 7.
- Briefly, explain three advantages of three phase system over a single phase system. 8.
- What modifications would be necessary if a motor is required to operate on voltage which 9. is different from that originally designed?
 - A motor stops after starting i.e. it fails to carry load. Give four possible causes of the problem.
- Give three practical applications of chemical effect of electric current.

Page 3 of 5

Define the term inverter as used in power supply.

The main components which are really required for conversion from a.c to d.c is a transformer and a rectifier. Briefly explain the function of each in power supply.

SECTION C (60 Marks)

Answer three (3) questions from this section.

- Why are transformers used in electrical transmission and distribution system? (a)
 - A step down transformer has a turn's ratio of 6:1. The input to the transformer is 3 kW at 3 kV; calculate the value of the secondary current. Neglect losses. (06 marks)

- A 600 kVA, single phase transformer when working at unity power factor has an efficiency of 92 % at full load and also at half load. Determine its efficiency when it operates at unity power factor and 60 % of full load.
- Mention and explain three classifications of secondary instruments. In each case give one 13. (a) example of the instrument which falls under that category.
 - A moving coil instrument has a resistance of 5 Ω between terminals and full scale deflection is obtained with a current of 0.015 A. The instrument is to be used with a manganim shunt to measure 100 A full scale. Calculate the error caused by a 20 °C rise in temperature when
 - the internal resistance is 5Ω due to copper only.
 - a 4 Ω manganim swamping resistor is used in series with a copper resistor of 1Ω . Given $\alpha_{copper} = 0.4\%$ per ^{0}C and $\alpha_{manganim} = 0.015\%$ per ^{0}C (14 marks)
- Differentiate line voltage from phase voltage. 14. (a)

(02 marks)

- A 15 kW, 440V three phase a.c. motor has an efficiency of 80% and a power factor of 0.6 (b) when delivering its rated output. Calculate the
 - output power in (kW)
 - (ii) phase current and phase voltage, if the windings are in star and delta connection.

(09 marks)

- A 400 V (line to line) is applied to three phase star-connected identical impedances each consisted of 4 Ω resistances in series with 3 Ω inductive reactance. Find the
 - line current and
 - (ii) total power supplied.

(09 marks)

- State major application for current Kirchhoff's law. (i) (a) 15.
 - Explain six precautions to be taken in the maintenance of a lead acid battery. (ii)

(07 marks)

Two cells L and M are connected in parallel to a battery charger. The open circuit voltages of the two cells are 12 V and 12.5 V respectively and their respective internal resistances are 0.06Ω and 0.05Ω . If the battery charger has the open – circuit voltage of

Page 4 of 5

15 V and an internal resistance of 0.15Ω , calculate the initial charging currents of batteries L and M. (13 marks)

- 16. (a) (i) State two laws mostly applied in the calculations of the illumination values.
 - (ii) Why the inert gases, like argon and neon filled in the fluorescent tubes or bulbs?

(03 marks)

- (b) (i) What do you understand by the term 'stroboscopic effect' as applied in the lighting system?
 - (ii) Enumerate three factors which used to reduce the stroboscopic effect at the

fluorescent lamps.

- (iii) What is the main function of a photo meter as far as the lighting system is concerned? (05 marks)
- (c) A hall 15 m by 20 m is to be illuminated to a level of 70 lux, luminaire having an efficiency of 12 lm/W and spacing height ratio 1.2 is to be suspended 4m above the floor. Estimate the number of luminous required and the power of each luminaire. Assume a utilization factor 0.5 and the maintenance factor 0.8. (12 marks)