THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

035

ENGINEERING SCIENCE

(For Both School and Private Candidates)

Time: 3 Hours

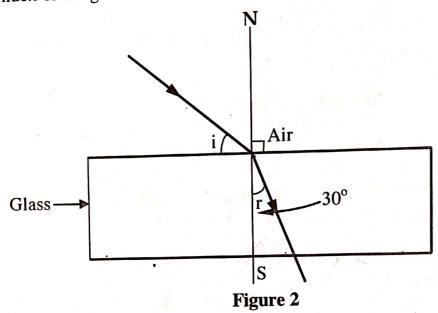
Friday, 09th November 2018 a.m.

Instructions

- 1. This paper consists of sections A, B and C with a total of sixteen (16) questions.
- 2. Answer all questions in sections A and B and three (3) questions from section C.
- 3. Calculators, Cellular phones and any unauthorized materials are not allowed in the examination room.
- 4. Write your Examination Number on every page of your answer booklet(s).

SECTION A (10 Marks)

Answer all questions in this section.


		Allswei um 4								
	E	each of the items (i) – (x) , choose the correct answer from among the given alternatives and its letter haside the item number in the answer booklet provided.								
•	From	its letter beside the item number in the answer booklet provided.								
	write	its letter beside the item number in the answer								
	(i)	What is the angles of incidence and reflection in the construction of simple periscope? $C = 45^{\circ}$								
	(1)	A 30° B 40° C 45°								
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	(ii)	When simple machine applies force on a body and a body moves in the same direction to that								
	()	of simple machine then one of the followilly is likely to happy,								
		A power is done on the body B Work is dolle on a body.								
		C energy is done on the body. D work is done by a body.								
		E work is done on a machine.								
		1								
	(iii)	The rate of working when a joule of work is done in one second is called								
		A Work B Joule C Energy								
		D Power E Watt.								
	(i)	Which and the list approach averages of the first class levers?								
	(iv)	Which of the following list represents examples of the first class levers? A Scissors claw hammer, pliers B Pincers, claw, hammer, spade								
		A Scissors, claw hammer, pliers C Pliers, broom, spade D Spade, Bottle opener, wheelbarrow								
		E Space, tweezers, wheelbarrow								
	(v)	Which of the following quantities expresses the ratio of weight of a substance to the weight of								
	` .	an equal volume of water?								
		A Density of the substance B Density of the water								
		C Relative density of the substance D Relative density of water								
		E An upthrust								
		In a distance-time graph for the motion of a body, the slope of the line usually represent								
	(vi)	B linitoriii fetatuation.								
		1) acceleration 1) acceleration of retaination.								
	•	C uniform acceleration. E velocity or speed.								
		L velocity 1								
	(vii)	Figure 1 represent bimetallic strip. What will happen if its temperature will be lowered and								
	(111)	then raised?								
		STEEL								
		DRASS								
		Figure 1								
		A It will bend down and then up								
		A It will bend down then down B It will bend up and then down B It will bend up and then to the right side								
		B It will bend up and then down C It will bend to the left and then to the right side It will bend to the left and then to the left side								
		C It will bend to the left and then to the left side D It will bend to the right and then to the left side								
		The smill put on and their out the								
i		1450 2 013								
		CC-18/CSEE								

	(viii) The A	quality or timbr	e of a	musical note is					¥.
	•	D	actaves.	E	intensity.	C	overtones.			
	(ix)	Whi	ch among the fo	llowir	ig represents v	ector quar	ntities?			
		Α	Weight, veloci	ty and	acceleration	В		, volume		
		C	Speed, acceler	ation a	and weight	D	Pressure, den	sity and volume		
AT.		E	Joule, pressure	and f	orce					
	()	The	ahanga in anala							*
	(x)	A	change in angle angular veloci		econd is called		angular accel	eration		
		C	angular motion			B D	period of ang			
		E	speed of angul		tion.	ט	period of ang	alai monom		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
					SECTION	B (30 Ma	ırks)			
				Ar	nswer all ques	tions in thi	is section.		13 2	
2.	A sc	rew is	nck has 5 thread	ls per o	centimetre. If	the length	of the turning	lever is 20 cm;	determine the	he
۷.	velo	city ra	tio of the screw	jack.						
		-				I I				ha
3.	Nam	e the	effect of an	electri	c current wh	ich is the	basis for the	successful op	eration of t	ne
	follo	wing	electrical devic	es:			p			
			lectric iron.		(b) An ele		or. (c) An electric (,011.	
	(d)	A fil	ament lamp.		(e) A fuse	e. <i>k</i>				
	7 . 7	C E	undamental and	l two	derived physic	eal quantit	ties. In each ca	se, mention the	apparatus us	sed
4.	List	tour i	e them.	itwo	derived physic	ar quarre	X1 1.4			
	to III	easur	them.			burnelly.				
5.			ate between wo							2
6.	Calc	ulate	a torque which	has to	o be applied t	o a flywh	neel with a mo	ment of inertia	l of 60 kgm	² to
	give	it an a	angular accelera	ation c	of 0.5 rad/s^2 .					
7.	How	does	solar and lunar	eclips	ses occur?					
8.	Why	the v	volume of a bu	ıbble	increases as	it rises fr	rom bottom o	f water to the	surface? Br	iefly
	expla	in.								
						allar	and loss than	50%?		
9.	Why	effici	ency of a car's	screw	jack is alway	ys smaller	and less than	3070:		16
		/								Un
10.	Brief	ly exp	olain the follow	ing w	ith regard to	ellergies.				-1
	(a)		nical energy.			1			9. Blx C	
	(b)	Nucl	ear energy.							
4		1			1 - Ani o fire	a with ar	iron nail?		7811	40
11.	Why	is it d	angerous to rep	place a	an electric fus	se with an	i ii oii iiaii.		54 . 18	
				. 11	Janes I	AL.		י ו אונמעו ל	Section Children	0
4	10.0			* * *		Mr.	mi	2 11	00	
N. Commission			3768 188	21.0			570	3194x2 x 319 628 3768	1 1 1 100	2
Wei		1	188	540	D-	ga 2 of 5		2 19	(To telni	
		8			Pa	ge 3 of 5	1472	,628	(Lp	
	, Elly Asia				C	C-18/CSEE		68	1	
				wp=		lal - FX	9	370		
				Fin	d this and other free	educational res aba.tetea.org	sources at:	Scanned by		
					mps.//makt	aoa.wwa.01g		-· - J		

SECTION C (60 Marks)

Answer three (3) questions from this section.

- A certain transparent liquid is poured in a measuring cylinder to a depth of 24 cm. If a stone at the bottom of the cylinder appears to be raised 6 cm as viewed by an observer from the top; (a) determine the refractive index of the liquid. (Give the answer in two decimal places). (04 marks)
- A ray of light is incident on the air-glass boundary as shown in Figure 2. If the refractive index of the glass is 1.5; determine the angle of incidence 'i'. (b)

- An object is placed 10 cm from a concave lens of focal length 15 cm. Using the lens formula (c) and 'real is positive sign' convention, determine;
 - The nature of the image.
 - The position of the image formed. (ii)

(06 marks)

- Define the following terms: (a)
 - Constant angular velocity (i)
 - Constant angular acceleration

- (02 marks)
- What is the peripheral velocity of a point on the rim of a wheel of radius 200 mm when (b) (07 marks) rotating at 3 rev/sec?
- The wheels of a car with a diameter of 700 mm is rotating when the car moves along a (c) horizontal road. If the rate of rotation increases from 50 rev/min to 1100 rev/min in 40 seconds, calculate;
 - the angular acceleration of the wheels. (i)
 - the linear acceleration of a point on the tyre thread.

(11 marks)

Find this and other free educational resources at: https://maktaba.tetea.org

Scanned by CamScanner

A machine which consist of a wheel of 300 mm diameter and an axle of 75 mm diameter has efficiency of 75% at a load of 120 N. Determine

the movement ratio of this machine.

the effort required to raise the 120 N load.

(07 marks)

- the effort required for this load if the machines efficiency was raised to 85% by lubrication of (b) (05 marks) (c) the bearings.
- the ideal effort for this load on this machine. (d)

(03 marks)

A step-up transformer has 1000 turns in the secondary coil and 100 turns in the primary coil. An alternating current of 5.0 A flows in the primary circuit when connected to a 12.0 V a.c. (15) (a) supply.

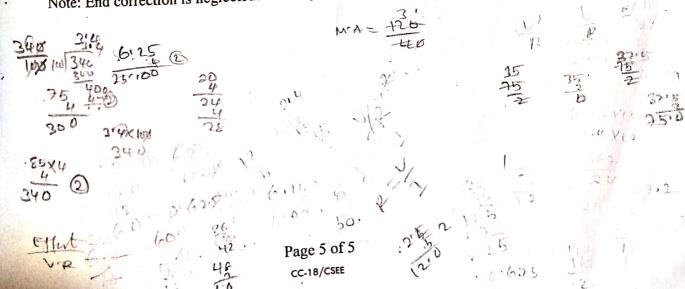
Calculate the voltage across the secondary coil.

If the transformer has an efficiency of 90%, what is the current in the secondary coil? (ii)

(10 marks)

The heating element of a 250 V electric cooker has effective resistance between terminals of kWh, how much does it cost to operate the cooker at maximum heat for half an hour? (06 marks)

A generator supplies a load current of 20 A at a p.d of 200V. Determine the power output of (c) the generator.


Define the following terms as used in sound waves: 16. (a)

Reverberation (ii)

(02 marks)

- A ship using an echo sounding device receives an echo from a wreck 0.8 second after the sound is transmitted. If the velocity of sound in sea-water is 1500 m/sec, determine the depth of wreck.
- A pipe open at both ends is dipped in water with one end open over the water. A radio producing a music of frequency 512Hz is brought very close to the the radio and the pipe are then raised, find the length of the air column in the pipe for the first resonance, and when next resonance occurs. (12 marks)

Note: End correction is neglected. Velocity of sound in air = 340m/sec.

