ENGINEERING SCIENCE - CSEE 2007

Solutions from: Maktaba by TETEA

By Yohana Lazaro

1.

i	ii	lii	iv	٧	vi	vii	viii	ix	Х
В	Α	C	Α	Α	Α	Α	D	D	Α

2.-Area in water = $180 \times 70 = 12600 \text{ cm}^2$

$$- Mass = 37800g$$

- Volume in water =mass/ density of water

$$=37800/1 = 37800 \text{ cm}^3$$

Then, height = volume/area

= 37800/12600

= 3 cm

3. From, P = density x g x height

$$= 13600 \times 9.81 \times 0.76$$

4.From, Q = mct

5.-Area =
$$\pi$$
 (2 x 10⁻³)²/4 = 3.14 x 10⁻⁶ m²

Tensile stress = force/Area = $50/(3.14 \times 10^{-6})$

$$= 15.92 \times 10^6 \text{ N/M}^2$$

- 6. Voltmeter is a device used to measure the potential difference of an electric current, while the Voltameter is the device used to measure the electric charge through electrolytic action.
- 7. (a)capacitance
 - (b)inductance

- (c) Magnetic flux density
- 8. From, coefficient of liner expansion = $\frac{increase \ in \ length}{orig. \ length \ x \ temp. \ change}$, so

Temperature change =
$$\frac{increase\ in\ length}{orig.\ length\ x\ coefficient\ of\ linear\ expansio}$$
$$=\frac{(20.096-20)}{20\ x\ 2.4\ x\ 10^{\circ}-5}=200^{\circ}C$$

Then, required temp. =
$$200 + 15$$

= 215° C

9.-
$$R = V/I$$

=
$$4.5/0.75 = 6\Omega$$
, but 1.5Ω per meter then

Then, length = 6/1.5

Length of wire will be 4m

- 10. Sensible heat is the heat which can rise the temperature of a substance while Latent heat is the heat which can change the state of a substance.
- 11. Recall that, square root of tension is proportional to frequency, so

$$F = k\sqrt{T}$$
, $(f_1/f_2)^2 = T_2/T_1$

$$T_2 = (400/600)^2 \times A$$

The tension is = 0.44A N

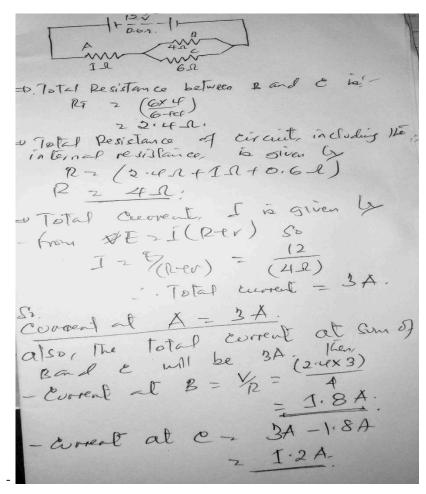
- 12.-Let mass of steam be m,
 - -sensible heat of water = $400 \times 20^{0} \times 4.2 = 33600 \text{ J}$
 - -sensible heat of copper = $250 \times 0.4 \times 20^{\circ} = 2000 \text{ J}$
 - -sensible heat of ice = $50 \times 4.2 \times 20^{\circ} = 4200 \text{ J}$
 - -Latent heat of fusion of ice = 50 x 336 = 16800 J
 - -Latent heat of vaporization of steam = m x 2260 = 2260m J
 - Sensible heat of steam = $m \times 4.2 \times 20 = 84m$

From heat lost by steam = heat gained by water + ice + copper can

Hence, mass = 24.15g

13. (a) Applying real-is-positive,

$$U = -20cm, f = -15$$


$$1/f = 1/u + 1/v$$
, $1/-15 = 1/-20 + 1/v$, $V = -60$ cm
Magnification, $M = v/u$
 $= 60/20 = 3$

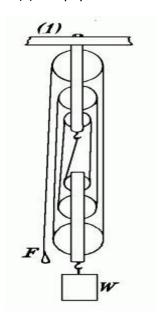
Hence, position = 60cm in front of lens and the magnification is 3

(b)At u = -5cm,
$$1/f = 1/u + 1/v$$

 $1/-15 = 1/-5 + 1/v, V = 7.5cm$
 $M = 7.5/5 = 1.5$

Hence, position = 7.5cm behind lens, magnification is 1.5

14. Consider the figure below;-


15.(a)magnetic flux is the number of magnetic lines passing through a given closed surfance.

(b) Given, No. of turns, N = 2000, current = 5A, time = 1/10 s, magnetic flux, Φ = 4mWb = 4 x 10^{-3} Wb

-From emf =
$$N \frac{d\Phi}{dt}$$
 = 2000 x $\frac{4-(-4)}{1/10}$ = 160000mV = 160V

Hence the average emf = 160 V

16(a)Pulley system.

Work done by effort = $1000 \times 2 = 2000J$

Negative means energy was lost.

Prepared by;-

Yohana peter Lazaro

0624876331 or 0756274618

mchelezdo2@gmail.com