ENGINEERING SCIENCE - CSEE 2011

Solutions from: Maktaba by TETEA

By Yohana Lazaro

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)
С	С	Е	D	С	В	Α	С	С	Α

2. Let mass of A = M_{a_a} mass of B = M_{b_a} and their specific heat capacities be C_a and C_b , respectively

Then, since $Q_a = Q_b$ but $C_a = 2C_b$ then

$$M_a \times 2C_b = M_bC_b$$

Hence, the ratio, $M_b/M_a = 2$.

3(a) Faraday's first law of electrolysis states that;-

"the deposited mass of a substance is directly proportional to the quantity of electricity passing through an electrolyte"

(b)-given mass = 1.55g, current I = 0.45A, E.C.E = 0.001118g/c

Case1, quantity of electricity used, Q = 1.55/0.001118 = 1386.404 C

Case2, then time = Q/I = 1386.404/0.45 = 3080.9seconds

Time taken = 3080.9 s

4

Fundamental quantity	instrument		
time	Watch, clock		
mass	Beam balance		
ampere	ammeter		

5-First class level, fulcrum is between load and effort

- -Second class level, load is between effort and fulcrum
- -Third class level, effort is between load and fulcrum
- 6. Diagrams for types of equilibriums

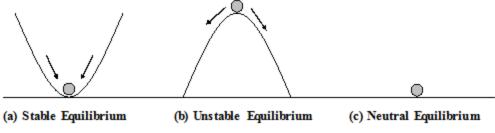
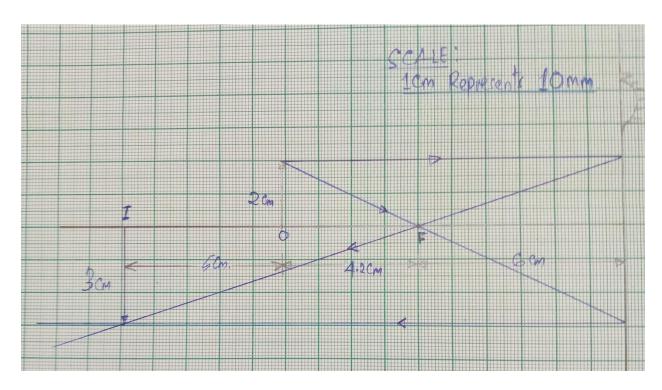



Figure 1 - Three Types of Equilibria

- 7(a) conditions for a system to be at equilibrium
 - -total upwards forces equals to total downward forces
 - -clockwise moments equals to anticlockwise moments
- (b) From the given figure, clockwise moment about fulcrum= anticlockwise moments

$$(150X2x)=(20 Xx) + (80 X(x + 30))$$
, on solving

8. Consider the graph below;-

-From graph,-positi0n of image = 155mm

-size of image = 30mm

-Nature of image is virtue.

9.-density of wood = 0.9g/cm³, its volume=30cm³, density of liquid =1.2g/cm³

(a)mass of liquid displaced

From mass = density x volume

$$= 1.2 \times 30$$

Hence mass of liquid = 36g

(b) Volume of wood = mass of liquid/density of wood

$$= 36 / 0.9$$

$$=40cm^{3}$$

10(a). The SI unit of force is newton.

(b)Let decrease in length be e=25mm

From load directly proportional to e

Then If 150N = 25mm, then 90N=15mm

Then total shortened length = 15mm + 25mm = 40 mm

- 11(a) unlike magnetic poles
 - (b) Like magnetic poles
- 12(a) (i) Principle of conservation of energy states that;-

"energy cannot be created or destroyed but can be transformed from one form to another"

- (ii)The SI unit of work JOULES.
- (iii)-from $V^2=U^2+2gs$, s=0.5m, u=0m/s then $V^2=9.81 \text{ m}^2/\text{s}^2$

Then $KE = 1/2MV^2$

$$=1/2 \times 2 \times 9.81$$

Hence,
$$KE = 9.81 J$$

- (b)-time, t=2.5s, u=0m/s
 - (i) From v=u+gt

$$=0 + 9.81 \times 2.5$$

Velocity to strike the ground is24.525m/s

(ii) From
$$v^2=u^2+2gs$$
, $s=v^2/2g=(24.525)^2/(2 \times 9.81)$ height = 30.66m

From
$$v^2=u^2-2as$$
, $a=u^2/2s=(24.525)^2/(2 \times 0.125)$

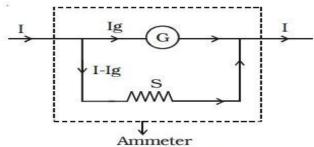
Hence retardation = 2.4m/s²

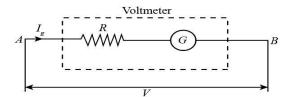
(c)-u=30m/s, s=20m, v=0m/s

(i) Time, from $s = ut - 1/2gt^2$, $20 = 30t - 1/2 \times 9.81t^2$, on solving

Time =
$$5.4s$$

- (ii) Total time to reach ground = $5.4 \times 2 = 10.8s$
- 13(a) (i)Shunt is a small resistance connected in parallel with galvanometer to convert it to measure current.
- (ii)Multiplier is the large resistance connected in series with galvanometer to convert it to measure voltage.
 - (b)-current of galvanometer, I_g=0.4A
 - -Resistance of galvanometer, $G=1\Omega$
 - (i) At I= 3.0A, consider the figure below;-




Fig 3.30 Conversion of galvanometer into an ammeter

Then since are in parallel, $(I-I_g) R = I_g G$

So, R=
$$(I_g/(I-I_g)) \times G$$

= 0.4/(3-0.4) x1

Hence shunt of 0.154Ω should be connected in parallel with galvanometer.

(ii) Voltage of 200V

Then, from= $I_g(R+G)$, R=V/ I_g -G = 200/0.4 -1

Hence multiplier of 499Ω should be connected in series with galvanometer.

(c)

14(a)-velocity ratio = distance moved by effort/distance moved by load

= 800/100

Velocity ratio = 8

-mechanical advantage = load/ effort

= 1120/160

Mechanical advantage = 7

-efficient = MA/VR x 100%

7/8 x 100%

Efficiency = 87.5%

(b)-velocity ratio of screw-jack = $2\pi r/pitch$

 $= (2 \times \pi \times 45)/0.6$

VR = 471.24

Efficiency = MA/VR x100%, MA = 471.24 x 0.5 = 235.6

Then, effort =load/Ma

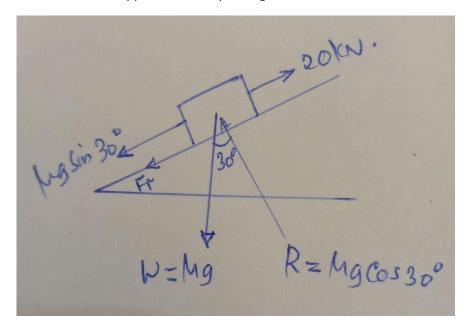
= 2500/235.6

Effort = 10.6N

(c)-pressure at force pump = Force/Area

 $= 100/(\pi x 7^2)/4$

Hence, pressure = 2.6 N/M^2


-Apply Pascal's law, pressure at larger piston = pressure at smaller piston

 $F/(\pi x 77^2/4) = 2.6$, on solving

Thrust at larger piston = 12100N

15(a) (i) Static friction is the friction which prevent the body to start to move.

(ii)Dynamic friction is the friction that opposes the body during in motion.

(b)-Normal reaction, R =Fcos30°

 $=3000 \times 9.81 \times \cos 30^{\circ}$

R = 25487.1N

-Coefficient of friction, = F_r/R , but (mgsi30° + F_r) = pulling force at equilibrium

So,
$$F_r = 20000 - 3000 \times 9.81 \times \sin 30^\circ$$

= 5285 N. then

Coefficient of friction = 5285/25487.1

= 0.21

(c)(i)Force is the pull or push of an object.

(ii)

FORCE	VERTICAL COMPONENT	HORIZONTAL COMPONENT
35N	35sin0 ⁰	35cos0 ^o
40N	40sin30°	40cos30 ⁰
50N	50sin60 ^o	-50cos60 ⁰
10N	-10sin45 ⁰	-10cos45 ⁰
20N	-20sin45 ⁰	20cos45 ⁰
TOTAL	-14.14N	51.71N

From R = $\sqrt{((14.14)2 + (51.71)2)}$

Resultant = 53.61 N

- 16(a) (i) Heat capacity is amount of heat required to rise the temperature of substance by 1K
 - (ii)Specific heat capacity is amount of heat required to rise the temperature of 1kg substance by 1K
- (iii)Specific latent heat of vaporization is amount of heat required to change into vapour 1Kg 0f a substance.
 - (iv)Specific latent heat of fusion is amount of heat required to melt 1kg of substance
 - (v)Latent heat is amount of heat required to change the state of a substance.
- (b) –heat gained by bath water = $100 \times C \times (60-45) = 1500 \text{ C}$ J, where C specific heat capacity of water
 - Heat lost by cold water = $20 \times C \times (45-10) = 700 \text{ CJ/min}$
 - -heat lost by hot water = $20 \times C \times (70-45) = 500 \text{ C J/min}$

Total heat lost = 700 + 500 = 1200C J/min

From heat lost = heat gained

1200C J/min = 1500C J, on solving for min, required time = 0.8 minutes.

(c)-Heat lost by copper metal = $0.04 \times 400 \times (200-t)$

-Heat gained by copper calorimeter + water = $(0.06 \times 400 \times (t-10)) + (0.05 \times 4200 \times (t-10))$

From, heat gained = heat lost

$$0.04 \times 400 \times (200-t) = (0.06 \times 400 \times (t-10)) + (0.05 \times 4200 \times (t-10))$$

On solving, $t = 22.16^{\circ}$ C is the final temperature.

Prepared by;-

Yohana p. Lazaro

0756274618, 0624876331

mchelezdo2@gmail.com