THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

er dagget de kvaradir okologist aflagar undelaster at alde ligenforen dater i

031/2A

PHYSICS 2A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Wednesday, 12th November 2014 a.m. Time: 2:30 Hours

Instructions

- This paper consists of two (2) questions. Answer all questions. 1.
- Where calculations are involved show your work clearly. 2.
- 3. Marks for questions are indicated at the end of each question.

医苯甲酚基二甲甲基磺胺甲磺胺二甲甲基磺胺异胺 医进口术 医皮肤结婚的 医自动性神经

- Calculators and cellular phones are **not** allowed in the examination room. 4.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
- Use acceleration due to gravity, $g = 10 \text{ms}^{-2}$. 6.

- 1. You are provided with a metre rule, a knife edge, two strings of length 100cm each, weight A of masses 20g and weight B of unknown mass. Proceed as follows:
 - (a) Locate and record the centre of gravity G of the metre rule by balancing on the knife edge.
 - (b) Suspend the 20g mass on the left hand side at 10cm mark and adjust the position of weight B on the right hand side of the knife edge until the metre rule balances horizontally.
 - (c) Read and record the values of distance of 20g mass and weight B as 'a' and 'b' respectively.
 - (d) Repeat the procedure in 1 (b) when the 20g mass is at 15cm, 20cm, 25cm and 30cm.
 - (e) Draw the diagram for your experiment.
 - (f) Tabulate your results.
 - (g) Plot a graph of 'a' against 'b'.
 - (h) What is the nature of the graph?
 - (i) Determine the slope of your graph.
 - (j) Use the slope to calculate the mass of B.
 - (k) Name and state the principle governing this experiment.
 - (1) Suggest the aim of this experiment.

(25 marks)

- 2. You are provided with a white sheet of paper, drawing board, plane mirror with holders, transparent ruler, protractor, optical pins, office pins and thumb pins. Proceed as follows:
 - (a) Put the drawing paper on the drawing board using thumb pins and draw two straight lines AB and CD to enclose an angle of $\alpha = 10^{\circ}$. Draw the line through O making 75° with AB. Then insert two optical pins P and Q on this line (see Figure 1).

Figure 1

- (b) Place the reflecting surface of the mirror along AB. Place other optical pins R and S to appear in straight line with images of P and Q. Remove the pins R and S and join the line ORS.
- (c) Turn the mirror through an angle $\alpha = 10^{0}$ so that its reflecting surface lies along CD. Stick pins T and U to appear in line with the images of P and Q. Join the line OUT. Record the angle β^{0} formed by RS and UT.

- (d) Repeat the experiment for $\alpha = 15^{\circ}$, 20° , 25° and 30° .
- (e) Tabulate your results.
- (f) Plot a graph of β^0 against α^0 .
- (g) Determine the slope of your graph.
- (h) Find the reciprocal of the slope.
- (i) What does the answer in 2 (h) represent?
- (j) From your graph, deduce the relationship between α^0 and β^0 .

Note: Attach your diagrams with the answer booklet.

(25 marks)