THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2B

PHYSICS 2B ACTUAL PRACTICAL B

(For Both School and Private Candidates)

Time: 2:30 Hours

Tuesday, 14th November 2017 a.m.

Instructions

- 1. This paper consists of **two** (2) questions. Answer all the questions.
- 2. Calculations should be clearly shown.
- 3. Marks for questions are indicated at the end of each question.
- 4. Calculators, cellular phones and any unauthorized materials are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
- 6. The following information may be useful:

 $\pi = 3.14$

- 1. The aim of the experiment in Figure 1 is to determine the effective mass of the spring and its spring constant K.
 - (a) Suspend the spiral spring to the retort stand.
 - (b) Load the lower end of the spring with a mass of M = 200g and then pull the mass slightly vertically downwards through a short distance from an equilibrium position and release it so that the system executes vertical oscillations of small amplitudes.
 - (c) Use a stop watch to record the time t (sec) for 20 vertical oscillations and then determine the periodic time T (sec), hence determine $T^2(sec^2)$.

Figure 1

- (d) Repeat this procedure for the other four (4) masses in steps of 50 grams.
- (e) Tabulate your results.
- (f) It is found that the period T of oscillations and the spring constant K are related by the equation, $\frac{T^2}{4\pi^2} = \frac{M+S}{K}$, where S is the effective mass of the spring.
 - (i) Plot a graph of T² against M.
 - (ii) Calculate the slope of the graph.
 - (iii) Using the given equation and the graph, determine the value of S and K.

(25 marks)

- 2. The aim of the experiment in Figure 2 is to determine the critical angle A of the given glass block.
 - (a) Fix a sheet of paper on a soft board using drawing pins.
 - (b) Place the glass block provided on the sheet of paper with its largest face upper most and trace its outline EFGH.
 - (c) Remove the block and on its outline, draw a perpendicular BI.
 - (d) Draw a ray AB such that angle $\beta = 35^{\circ}$.

- (e) Replace the glass block.
- (f) Stick two pins P₁ and P₂ along AB and looking through the glass block from the opposite face HG, stick two other pins P₃ and P₄ in line with P₁ and P₂. Remove the glass block.
- (g) Draw a straight line DC through P₄ and P₃ and join up C to B.
- (h) Measure the angle of refraction r and then calculate the value of $\cos\beta$ and $\sin r$.
- (i) Repeat the procedure (d) to (h) for values of $\beta = 45^{\circ}$, 55° , 65° and 75° .
- (j) Tabulate your results.
- (k) Plot a graph of sinr against cosβ.
- (l) Determine the gradient G of the graph.
- (m) Calculate the value of the critical angle A from G = sin A.

(25 marks)

Note: The diagrams for question 2 should be attached to answer booklet(s)