THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2A

PHYSICS 2A

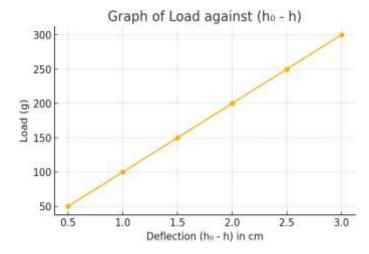
ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2003

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.


1. The aim of this experiment is to determine Young's modulus Y of a given metre rule.

(a) Record your readings in a suitable table including (ho - h)

Let
$$h_0 = 25.0$$
 cm

		٠.
		-
24.5	0.5	
24.0	1.0	
23.5	1.5	
23.0	2.0	
22.5	2.5	
22.0	3.0	
	24.5 24.0 23.5 23.0 22.5	24.0 1.0 23.5 1.5 23.0 2.0 22.5 2.5

(b) Plot a graph of L (Load) against (ho - h)

(c) From your graph find the slope G

Use (0.5, 50) and (3.0, 300)

$$G = \Delta L / \Delta(h_0 - h) = (300 - 50) / (3.0 - 0.5) = 250 / 2.5 = 100 \text{ g/cm}$$

Convert to N/cm: G = 100 g/cm = 1.0 N/cm

(d) Determine Young's modulus Y of the wooden metre rule

Use the formula:

$$Y = (4 / G) \times (1 / b t^2)$$

Let:

l = 80.0 cm

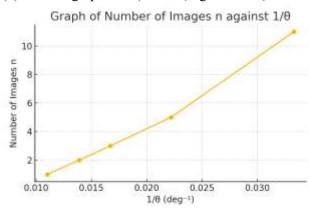
b = 2.50 cm

$$t = 0.50 \text{ cm}$$

$$G = 1.0 \text{ N/cm}$$

$$Y = (4 / 1.0) \times (80 / (2.5 \times 0.25))$$

$$=4 \times (80 / 0.625)$$


$$= 4 \times 128 = 512 \text{ N/cm}^2$$

Convert to N/m²: $Y = 512 \times 10^4 = 5.12 \times 10^6 \text{ N/m}^2$

- 2. The aim of the experiment is to determine the relationship between number of images and angle between mirrors.
- (a) Tabulate your results

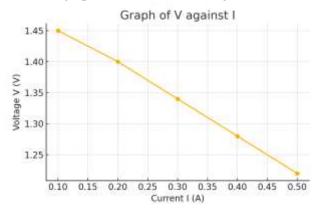
$\mid Number\ of\ images\ n\mid Angle\ \theta\ (deg)\mid 1/\theta\ (deg^{-1})\mid$						
					-	
	1		90	0.011		
	2		72	0.0139		
	3		60	0.0167		
	5		45	0.0222		
	11		30	0.0333		

(b) Plot the graph of n (vertical) against $1/\theta$ (horizontal)

- (c) From your graph:
- (i) Slope G = (11 1) / (0.0333 0.011) = 10 / 0.0223 = 448.4
- (ii) Intercept P = 0
- (iii) Equation: $n = G / \theta + P$

$$n = 1/\theta \times G$$

- (d) (i) When $\theta = 0$, $n = \infty$ (infinite images formed)
- (ii) Aim of experiment: To establish the mathematical relation between angle θ and number of images n


3. The aim of this experiment is to determine the e.m.f. and internal resistance of a cell using an ammeter and a voltmeter.

(a) Tabulate your readings:

Current I	(A) Volta	ge V (V)
1040		

0.10	1.45	
0.20	1.40	
0.30	1.34	
0.40	1.28	
0.50	1.22	

(b) Plot a graph of V (vertical axis) against I (horizontal axis)

(c) Find the slope of the graph

Use points (0.10, 1.45) and (0.50, 1.22)

Slope
$$m = (1.22 - 1.45) / (0.50 - 0.10) = -0.23 / 0.40 = -0.575$$

Therefore, slope =
$$-r = -0.575$$

So,
$$r = 0.575 \Omega$$

(d) Using the equation V = E - Ir

The y-intercept of the graph is E

From extrapolation of the graph, $E \approx 1.50 \text{ V}$

So.

E = 1.50 V

 $r = 0.575 \Omega$