THE UNITED REPUBLIC OF TANZANIA

NATIONAL EXAMINATIONS COUNCIL

CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2A

PHYSICS 2A

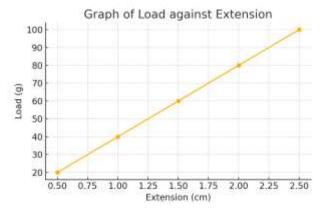
ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 2:30 Hours ANSWERS Year: 2005

Instructions

- 1. This paper consists of two questions.
- 2. Answer all questions.


1. The aim of this experiment is to determine the mass of unknown weight labelled X and the force constant of the spring k.

Let $S_0 = 5.0$ cm and mass W = 50 g is always on the pan and ignored in all readings.

| Load (g) | Scale reading S (cm) | Extension $e = S - S_0$ (cm) | Force F (N) |

20	5.5	0.5	0.20	,
40	6.0	1.0	0.40	
60	6.5	1.5	0.60	
80	7.0	2.0	0.80	
100	7.5	2.5	1.00	
X	6.3	1.3	?	

(a) Plot a graph of load against extension

(b)(i) Find the gradient (G) of your graph

Using (0.5, 20) and (2.5, 100):

$$G = (100 - 20) / (2.5 - 0.5) = 80 / 2 = 40 \text{ g/cm}$$

(ii) What is the physical meaning of the gradient?

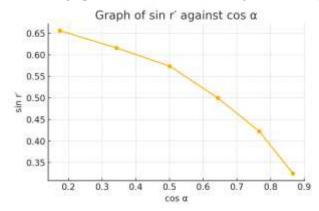
The gradient represents the spring constant k, but in g/cm.

To convert to N/cm:

$$k = 40 \text{ g/cm} = 0.04 \text{ kg/cm} \times 10 = 0.4 \text{ N/cm}$$

(c) From the graph, what is the mass of the weight labelled X?

At
$$e = 1.3$$
 cm, $m = G \times e = 40 \times 1.3 = 52$ g


So, mass of X = 52 g

2. The aim of this experiment is to find the critical angle C of the given glass block.

Let the recorded values be:

$$|\alpha(^{\circ})| r'(^{\circ}) |\cos \alpha| \sin r'|$$

(a) Plot a graph of sin r' (vertical axis) against cos α (horizontal axis)

(b) Find the slope of the graph

Use points (0.866, 0.325) and (0.500, 0.574)

Slope
$$G = (0.574 - 0.325) / (0.500 - 0.866) = 0.249 / (-0.366) = -0.680$$

Use magnitude: G = 0.680

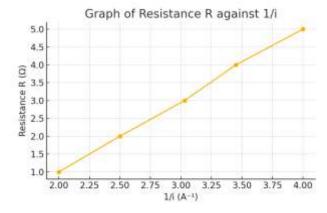
(c) Calculate the value of C where slope $= \sin C$

$$\sin C = 0.680$$

$$C = \sin^{-1}(0.680) = 42.8^{\circ}$$

(d) State the possible source of error and precautions you have taken during the experiment

Source of error:


- Inaccurate pin placement or parallax error when aligning pins

Precaution:

- Ensure pins are vertical and sighted accurately through the glass
- Use sharp pencil marks and avoid dirty or scratched glass surfaces
- 3. The aim of this experiment is to determine the e.m.f. E and internal resistance r of a cell.
- (c) Tabulate your results and complete the following table:

2	0.40	2.50	
3	0.33	3.03	
4	0.29	3.45	
5	0.25	4.00	

(d) Plot the graph of R against 1/i

(e) The graph uses the equation $R=E/i\,$ - $\,r$

This is of the form y = mx + c, where:

$$-y = R$$

$$- x = 1/i$$

$$-m = E \text{ (slope)}$$

$$-c = -r$$
 (intercept)

(i) Suggest how E and r may be evaluated from your graph

E is the slope of the graph

r is the negative of the y-intercept

(ii) Evaluate E for one cell

Using points (2.00, 1) and (4.00, 5):

$$E = (5 - 1) / (4.00 - 2.00) = 4 / 2 = 2 V$$

(iii) Evaluate r for one cell

Extrapolate the graph to where 1/i = 0 and read the R-intercept.

Let y-intercept = -1.0

So,
$$r = -(-1.0) = 1.0 \Omega$$

(f) State one source of error and suggest one way of minimizing it

Source of error:

- Inaccurate current readings due to pointer vibration in the ammeter

Minimization:

- Take multiple readings quickly and compute average
- Ensure stable connections and low-resistance contact points