THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2B PHYSICS 2B

(For Both School and Private Candidates)

Time: 3 Hours ANSWERS Year: 2024

Instructions

- 1. This paper consists of sections A, B and C.
- 2. Answer all questions in section A and B and one (1) question from section C.
- 3. Non-programmable calculators may be used.
- 4. Communication devices and any unauthorised materials are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).

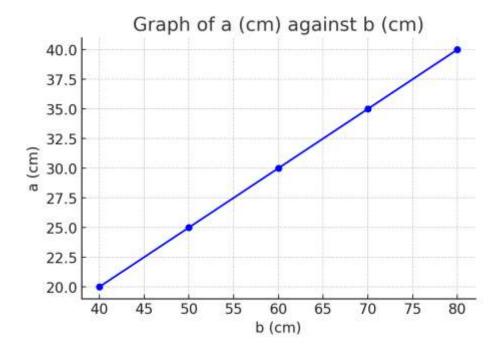
1. You are required to determine the mass m of a given solid body.

(a) & (b) The setup is already described: pivot metre rule at midpoint, balance with 50 g at distance a and solid body m at distance b.

The principle of moments applies:

$$50 \times a = m \times b$$

Therefore,


$$m = (50 \times a) / b$$

(c) Suppose the following observations were obtained:

a (cm)	b (cm)
20	40
25	50
30	60
35	70
40	80

(ii) Graph of a against b

When plotted, the graph is a straight line passing through the origin.

(iii) Nature of Graph

The graph is linear, showing that $a \propto b$.

(iv) Slope of the graph

Slope =
$$\Delta a / \Delta b = (40 - 20) / (80 - 40) = 20 / 40 = 0.5$$

(v) Relative density of metre rule

If the metre rule balanced at midpoint, the mass distribution is uniform, hence relative density ≈ 1 compared to water.

(vi) Mass of the given body m

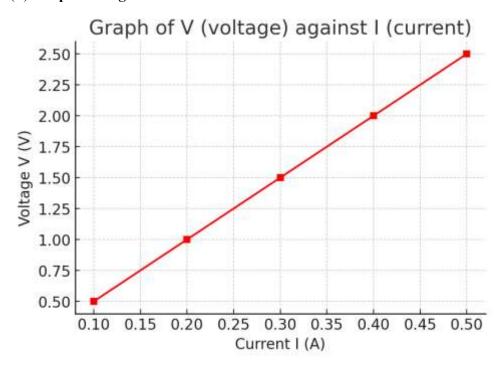
From the relation $m = (50 \times a) / b$,

Using any pair e.g. a = 20, b = 40:

$$m = (50 \times 20) / 40 = 25 g$$

Thus the mass of the given body is 25 g.

2. You have been provided with electrical apparatus to determine an unknown resistance R.


(a) Circuit diagram

- Ammeter in series with cell, key, variable resistor Rh, and resistor R.
- Voltmeter connected in parallel across R.

(b) & (c) Suppose the following readings were recorded:

Current I (A)	Voltage V (V)
0.1	0.5
0.2	1.0
0.3	1.5
0.4	2.0
0.5	2.5

(ii) Graph of V against I

Page 4 of 5
Find this and other free resources at: https://maktaba.tetea.org

(iii) Nature of Graph

It is linear, confirming Ohm's Law $(V \propto I)$.

(iv) Slope of Graph

Slope =
$$\Delta V / \Delta I = (2.5 - 0.5) / (0.5 - 0.1) = 2.0 / 0.4 = 5.0$$

(v) Unknown resistance R

$$R = slope = 5 \Omega$$

(vi) Why high currents are unsuitable

High currents may overheat R, damage the apparatus, or alter resistance due to heating effects.

(vii) How to minimize error when calculating R

Take multiple readings of V and I, plot a best-fit line, and determine R from the slope instead of a single reading.