THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATTION EXAMINATION

733/2A BIOLOGY 2A

(ACTUAL PRACTICAL A)

Time: 3 Hours ANSWERS Monday, 13th May 2024

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 40 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

- 1. You are provided with specimen C. Carry out dissection to display the urinogenital system. Leave your specimen properly displayed for assessment.
- (a) Draw a large diagram of your dissection and label the structures related to a displayed system.

A labeled diagram of a dissected frog or toad showing:

- Kidney
- Urinary bladder
- Ureter
- Testes (if male) or ovaries (if female)
- Fat bodies
- Cloaca

The diagram should show these structures in the abdominal cavity after careful dissection from ventral side.

(b) Identify the sex of the specimen.

Answer

If testes are visible as cream-colored, oval bodies near the kidneys — it's a **male**. If ovaries are visible as large, lobed, black or grayish sacs with eggs — it's a **female**.

- (c) From the specimen, name the organ that is
- (i) similar to that of human being and has a function of excreting nitrogenous waste.

Answer: Kidney

(ii) responsible for production of gametes.

Answer: Testes (in male) or Ovaries (in female)

(d) Classify specimen C to class level.

Answer:

Kingdom: Animalia Phylum: Chordata Class: Amphibia

2. You have been provided with solution X₁.

(a) Using the reagents provided, carry out an experiment to identify food substance(s) contained in Solution X_1 . Present your report in a tabular form as follows:

Food Tested	Procedure	Observation	Inference
Starch	Add iodine solution to X1	Blue-black colour appears	Starch present
Reducing sugars	Add Benedict's solution to X ₁ and heat in a water bath	Colour changes from blue to green/yellow/orange/red	Reducing sugar present
Protein	Add Biuret solution to X ₁	Purple/violet colour appears	Protein present
Lipid	Add ethanol to X ₁ , then add water and shake	White emulsion forms	Lipid present

- (b) From the results obtained, answer the following questions:
- (i) State the role of each food substance(s) identified from solution X₁ in human body.

Answer:

- Starch: Provides energy after being broken down into glucose.
- Reducing sugars: Provide quick and easily available energy.
- Protein: For growth, repair, and building body tissues.
- Lipid: Provides energy, insulates the body, and forms cell membranes.
- (ii) What is the role of dilute HCl in this experiment?

Answer:

It is used to hydrolyze complex carbohydrates like starch into simpler reducing sugars before testing with Benedict's solution.

- (iii) State the site of digestion for each food substance(s) identified from solution X₁.
 - Starch: Mouth (salivary amylase) and small intestine (pancreatic amylase)
 - Reducing sugars: Small intestine

- Protein: Stomach (pepsin) and small intestine (proteases)
- Lipid: Small intestine (by bile and lipase)
- (iv) Identify any two natural food stuff from which solution X₁ could have been extracted.

Answer:

- Milk
- Groundnuts

3. With the aid of a hand lens, observe specimen J, K, L and M provided and then answer the following questions:

(a) Write the common names of each of the specimen J, K, L and M.

Answer:

Specimen J: Grasshopper Specimen K: Housefly Specimen L: Tapeworm Specimen M: Roundworm

(b) In which class(s) do specimen J and K belong? Give two reasons that guide you to place them in the mentioned class(s).

Answer:

Specimen J: Class Insecta Specimen K: Class Insecta

Reasons:

- 1. Both have three pairs of legs.
- 2. Both have segmented bodies divided into head, thorax, and abdomen.
- (c) Observe the mouth structure of a specimen K and
- (i) suggest the type of food the organism feeds on.

Answer:

Liquid food (juices, nectar, decaying matter)

(ii) state the mechanism by which the organism feeds on.

Answer:

By sucking or lapping using its proboscis.

(d) Draw diagrams of specimen L and M and label the structures responsible for reproduction and nutrient absorption.

For Tapeworm (L):

• Label scolex (head)

- Proglottids (segments)
- Reproductive organs (testes and ovaries in proglottids)
- Body wall (for nutrient absorption)

For Roundworm (M):

- Label mouth
- Intestine
- Reproductive organs (ovary/testis, uterus/sperm duct depending on sex)
- Anus

The structures for nutrient absorption:

• In tapeworm: Body wall

• In roundworm: Intestine

The structures for reproduction:

• In tapeworm: Reproductive organs within proglottids

• In roundworm: Ovary/testis