THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

Time: 3 Hours ANSWERS Wednesday, 17th May 2011 a.m

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. Table 1: Titration results

Titration No.	Trial	1	2	3
Final volume (cm³)	23.6	47.2	70.8	94.4
Initial volume (cm³)	0.0	23.6	47.2	70.8
Volume used (cm³)	23.6	23.6	23.6	23.6

(a) (i) Determine the average titre value.

Average titre value =
$$(23.6 + 23.6 + 23.6 + 23.6) / 4$$

= 23.6 cm^3

(ii) Write the half Redox reaction equation between ZA and ZB.

For KMnO₄:

$$MnO_4^- + 8H^+ + 5e^- ----> Mn^{2+} + 4H_2O$$

For Fe²⁺:

$$Fe^{2+} ----> Fe^{3+} + e^{-}$$

(iii) Write the Net Redox reaction equation for this experiment.

$$MnO_4^- + 5Fe^{2+} + 8H^+ - - > Mn^{2+} + 5Fe^{3+} + 4H_2O$$

(iv) State the indicator used, its colour and which one was reduced.

Indicator: KMnO₄ acts as a self-indicator.

Colour: Purple to colourless.

Reduced species: MnO₄⁻ is reduced to Mn²⁺.

(b) (i) Calculate the concentration of KMnO₄ in g/dm³.

Molarity = 0.02 M

Molar mass of $KMnO_4 = 158.04 \text{ g/mol}$

 $Concentration = 0.02 \times 158.04$

 $= 3.1608 \text{ g/dm}^3$

(ii) Calculate the concentration of FeSO₄·7H₂O in mol/dm³.

From the balanced equation:

1MnO₄⁻ reacts with 5Fe²⁺

 $M_1V_1/n_1 = M_2V_2/n_2$

$$0.02 \times 23.6 / 1 = M_2 \times 25 / 5$$

$$M_2 = (0.02 \times 23.6 \times 5) \: / \: 25$$

= (2.36) / 25

= 0.0472 M

(iii) Concentration of FeSO₄ in g/dm³

Molar mass of FeSO₄·7H₂O = 278.01 g/mol

2. Table 2.2: Experimental results

Experiment No.	Vol. of PS (cm³)	Vol. of PQ (cm³)	Vol. of H ₂ O (cm ³)	Time t (s)	1/t (s ⁻¹)
1	2	8	10	60	0.0167
2	4	8	6	42	0.0238
3	6	8	4	30	0.0333
4	8	8	2	24	0.0417

(a) Write a balanced chemical equation for the reaction between PQ and PR.

$$Na_2S_2O_3 + 2HC1 ----> 2NaC1 + SO_2 + S + H_2O$$

(b) What is the reaction product which causes the solution to cloud the letter Y?

Precipitated sulphur (S) causes the cloudiness.

(c) Calculate the order of reaction with respect to the concentration of the acid.

Since volume of HCl is constant in each experiment, its effect cannot be directly determined from this set. You'd need to vary acid concentration while keeping $Na_2S_2O_3$ constant. From given, order = 1 (from standard reaction kinetics for this system).

3. Qualitative analysis of Compound J

S/N	Test	Observation	Inference
(a)	Appearance	White crystalline solid	Ionic salt possible
(b)	Flame test	Yellow flame	Sodium ion (Na ⁺) present
(c)	Solubility	Soluble in water	Soluble salt
(d)	Action with heat	No visible change	Thermally stable
(e)	Action with dilute H ₂ SO ₄	Effervescence, colourless gas evolved	Carbonate (CO ₃ ²⁻) present

(f)	Action with concentrated H ₂ SO ₄	Vigorous effervescence	Confirms carbonate
(g)	Action with aqueous NaOH	No precipitate	Na ⁺ confirmed
(h)	Action with aqueous NH ₃	No precipitate	Confirms Na ⁺
(i)	Action with potassium iodide	No reaction	No Pb ²⁺ or Ag ⁺
(j)	Action with potassium iodide + heat	No reaction	Same
(k)	Action with FeSO ₄ + conc H ₂ SO ₄	Effervescence (CO ₂ gas evolved)	CO ₃ ²⁻ confirmed

Conclusion

(i) The cation and anion

Cation: Na⁺ Anion: CO₃²⁻

(ii) Chemical formula of J

Na₂CO₃

Three ionic equations

(i) Action with heat $CO_3^{2-} + 2H^+ - --- > CO_2 + H_2O$

(ii) Reaction with aqueous NaOH Na⁺ + OH⁻ ----> No precipitate

(iii) Reaction with FeSO₄ + H_2SO_4 $CO_3^{2-} + 2H^+ ----> CO_2 + H_2O$