# THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATTION EXAMINATION

## 732/2A

## **CHEMISTRY 2A**

# (ACTUAL PRACTICAL A)

Time: 3 Hours ANSWERS Thursday, 15th May 2014 a.m

## Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).



1. (a) Perform a titration experiment using the following requirements:

## **Procedure Summary:**

- DD in burette
- Pipette 25 cm³ PP into flask
- Add 2 drops MO
- Titrate DD against PP until colour change, repeat 3 times

## **Questions**

(i) Find the volume of acid required to neutralize SC solution.

#### **Answer**

| Titration | Final burette<br>reading (cm³) | Initial burette<br>reading (cm³) | Volume<br>used (cm³) |
|-----------|--------------------------------|----------------------------------|----------------------|
| 1         | 21.30                          | 0.00                             | 21.30                |
| 2         | 21.40                          | 0.00                             | 21.40                |
| 3         | 21.20                          | 0.00                             | 21.20                |

Average titre =  $(21.30 + 21.40 + 21.20) / 3 = 21.30 \text{ cm}^3$ 

(ii) Write balanced molecular and ionic equations for the reaction.

#### **Answer**

Molecular:

$$Na_2CO_3 + 2HC1 ----> 2NaC1 + CO_2 + H_2O$$

Ionic:

$$CO_3^{2-} + 2H^+ - - > CO_2 + H_2O$$

(iii) What colour change was observed at the end-point?

## Answer

Yellow to orange

(iv) Why was the indicator necessary in this titration?

## Answer

To signal the completion of the neutralisation by changing colour at the end point.

(v) What do you think was the reason for using Methyl Orange instead of POP?

## **Answer**

Because Methyl Orange is suitable for strong acid—weak base titrations while phenolphthalein would give an inaccurate end point in such reactions.

- (b) From the titration you performed, calculate:
- (i) Molarity of DD.

## Answer

Using  $M_1V_1 = M_2V_2$ 

$$M_2 = (0.2 \times 25) / 21.30$$

$$= 5 / 21.30$$

$$= 0.2347 M$$

(ii) Molarity of SC.

#### Answer

Same as PP: 0.2 M

(iii) Mass of sodium carbonate present in dm³ of impure sample.

# **Answer**

Molar mass 
$$Na_2CO_3 = 106 \text{ g/mol}$$

Mass = 
$$0.2 \times 106 = 21.2$$
 g

- (c) Suppose impurities contained in SC is water of crystallisation in the formula Na<sub>2</sub>CO<sub>3</sub>.7H<sub>2</sub>O:
- (i) Calculate the value of T.

Molar mass 
$$Na_2CO_3 = 106 g$$

Molar mass 
$$Na_2CO_3.7H_2O = 106 + (7 \times 18) = 232 \text{ g}$$

% purity = 
$$(106 / 232) \times 100 = 45.69\%$$

# 2. (a) Tabulate your results as follows

| Exp.<br>No. | Vol. of Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> (cm <sup>3</sup> ) | Time (s) | 1/t (s <sup>-1</sup> ) |
|-------------|--------------------------------------------------------------------------|----------|------------------------|
| 1           | 4                                                                        | 120      | 0.00833                |
| 2           | 8                                                                        | 60       | 0.01667                |
| 3           | 12                                                                       | 40       | 0.02500                |

- (b) Assuming volumes are directly proportional to concentrations:
- (i) Write a balanced ionic equation for the reaction.

## **Answer**

$$S_2O_3^{2-} + 2H^+ - S(s) + SO_2 + H_2O$$

(ii) Find the value of x (from a graph of log(rate) against log[Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>])

#### **Answer**

From doubling concentration:

 $(0.00833 \text{ to } 0.01667) \text{ when } [S_2O_3^{2-}] \text{ doubles, rate doubles}$ 

Therefore, x = 1

(iii) Given x = 1, find k (using first result)

$$\begin{aligned} &Rate = k \; [S_2O_3{}^{2-}] \\ &0.00833 = k \times (4/24) \\ &= k \times 0.1667 \\ &k = 0.00833 \; / \; 0.1667 \\ &k = 0.04998 \; s^{-1} \end{aligned}$$

(iv) State the order of reaction for this experiment.

#### Answer

First order with respect to Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>

- (c) (i) Giving one reason explain how the rate of reaction would be affected if:
- (i) Temperature increased

## **Answer**

Rate would increase as higher temperature increases particle kinetic energy, leading to more effective collisions.

(ii) The value of k would be less than the one found in this experiment.

## Answer

Because rate constant (k) depends on temperature; lower temperature reduces k.

# 3. (a) Data Table

| Test                   | Observation                         | Inference                                                      |
|------------------------|-------------------------------------|----------------------------------------------------------------|
| (i)<br>Appearance      | White crystalline solid             | Possible<br>halide/carbonate                                   |
| (ii)<br>Solubility     | Soluble in water                    | Ionic salt                                                     |
| (iii) Flame<br>test    | Yellow flame                        | Sodium cation present                                          |
| (iv) Dilute<br>HCl     | Effervescence (CO <sub>2</sub> gas) | Presence of CO <sub>3</sub> <sup>2-</sup>                      |
| (v) Barium<br>nitrate  | White precipitate                   | SO <sub>4</sub> <sup>2-</sup> or CO <sub>3</sub> <sup>2-</sup> |
| (vi) Silver<br>nitrate | No precipitate                      | No Cl <sup>-</sup> , Br <sup>-</sup> , I <sup>-</sup>          |
| (vii) NaOH             | White ppt soluble in excess         | Amphoteric or zinc/lead                                        |

| (viii) | White ppt soluble in | Zinc confirmed |
|--------|----------------------|----------------|
| NH4OH  | excess               |                |

(b) (i) Write your summary based on the cation and anion present in sample F.

## **Answer**

Cation: Zinc (Zn<sup>2+</sup>)

Anion: Carbonate (CO<sub>3</sub><sup>2-</sup>)

(ii) Molecular formula for sample F.

#### **Answer**

ZnCO<sub>3</sub>

(iii) Name the compound.

## Answer

Zinc carbonate

(c) (i) Molecular and ionic equation for reaction in test (viii)

## **Answer**

$$Zn^{2+} + 2OH^{-} ----> Zn(OH)_2$$
 (white ppt)

(ii) Ionic equation for reaction in test (vi)

## Answer

 $CO_3^{2-} + 2Ag^+$  ----> No reaction (since no halide)

(iii) Name of the compound formed in test (viii)

## Answer

Zinc hydroxide