THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2A CHEMISTRY 2A

(ACTUAL PRACTICAL A)

Time: 3 Hours ANSWERS Year: 2015

Instructions.

- 1. This paper consists of **three (3)** questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with the following:

Solution P: A 0.1 M solution of sodium hydroxide

Solution Q: A solution prepared by dissolving 0.950 g of a metallic nitrate (MNO₃) in 250 cm³ of distilled water

Indicator: Methyl orange

(a) Using a pipette, measure 25.0 cm³ of solution Q into a conical flask and add 3 drops of methyl orange.

Titrate with solution P from a burette until the solution turns from orange to yellow. Repeat the titration to get three consistent readings.

The titration was performed as instructed. Methyl orange changed from orange to yellow, indicating the end point. Three titrations were performed to ensure accuracy.

(b) Record the titration results clearly in a table and calculate the average volume of sodium hydroxide used.

Titration	Final Burette Reading	Initial Burette	Volume Used
Number	(cm³)	Reading (cm ³)	(cm³)
1	19.8	0.0	19.8
2	20.0	0.0	20.0
3	20.0	0.0	20.0

Average volume used = $(19.8 + 20.0 + 20.0) \div 3 = 19.93 \text{ cm}^3$

(c) Write a balanced chemical equation for the reaction between sodium hydroxide and MNO₃.

$$MNO_3 + NaOH \rightarrow M(OH) + NaNO_3$$

(d) Calculate the number of moles of NaOH used during titration.

Moles = molarity \times volume in dm³

$$=0.1 \times (19.93 \div 1000)$$

$$= 0.1 \times 0.01993 = 0.001993 \text{ mol}$$

(e) Determine the number of moles and concentration of MNO₃ in solution Q.

From the balanced equation: 1 mol of MNO3 reacts with 1 mol of NaOH

Moles of $MNO_3 = 0.001993$ mol

Concentration = moles \div volume = $0.001993 \div 0.025 = 0.07972 \text{ mol/dm}^3$

(f) Using the total mass of MNO₃ used to prepare the solution, calculate its molar mass.

Mass in 1 dm³ =
$$0.950 \times (1000 \div 250) = 3.8 \text{ g}$$

Molar mass = mass \div moles = 3.8 \div 0.07972 = **47.65 g/mol**

(g) Deduce the likely identity of metal M if it is a reactive alkali earth metal.

Molar mass of MNO₃ = 47.65 g/mol.

Given molar mass of 47.65 g/mol \approx metal hydroxide, then

Subtract OH = 47.65 - 17 = 30.65 g/mol, closest to magnesium (Mg = 24.3)

Hence, the likely identity of M is magnesium.

2. You are provided with:

Hydrogen peroxide solution (H₂O₂), freshly prepared manganese(IV) oxide powder (MnO₂), and distilled water.

You are to study how the amount of MnO₂ affects the rate of oxygen gas evolution during the decomposition of hydrogen peroxide.

Experiment	Mass of MnO ₂	Volume of H2O2	Time for bubbling to stop
	(g)	(cm³)	(s)
1	0.1	10	180
2	0.2	10	100
3	0.4	10	48
4	0.6	10	30

(b) For each trial, calculate the rate of reaction as 1/t and complete the table.

Experiment	Mass of MnO ₂ (g)	Time (s)	1/t (s ⁻¹)
1	0.1	180	0.00556
2	0.2	100	0.01000
3	0.4	48	0.02083
4	0.6	30	0.03333

(c) Plot a graph of rate (1/t) against mass of MnO₂.

[A straight line graph is expected, indicating direct proportionality.]

(d) What is the relationship between the rate of reaction and the amount of catalyst?

The rate increases proportionally as the mass of MnO₂ increases. This shows that the amount of catalyst positively affects the speed of reaction, although the catalyst itself is not consumed.

(e) Write the balanced chemical equation for the decomposition of hydrogen peroxide.

$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g)$$

(f) What is the role of MnO₂ in this experiment?

MnO₂ acts as a **catalyst**. It increases the rate of decomposition of H₂O₂ without being consumed in the reaction.

(g) State two safety precautions to observe when handling hydrogen peroxide.

- 1. Wear safety goggles and gloves to avoid contact with skin and eyes, as hydrogen peroxide is corrosive.
- 2. Handle with care in a well-ventilated area, as it releases oxygen which may intensify fire.

3. A white powder labelled Substance Y is suspected to be an ionic compound. Carry out the following tests to identify the ions present.

Test	Observation	Inference
(a) Appearance of substance Y	White powder	Likely ionic salt
(b) Solubility in cold water	Dissolves completely	Soluble ionic salt
(c) Perform a flame test using a platinum wire	Bright yellow flame	Sodium ion (Na+) present
(d) Add dilute nitric acid to a small amount of Y	Effervescence observed	Carbonate ion (CO ₃ ²⁻) present
(e) Add barium nitrate solution to the above solution	White precipitate forms	Confirms CO ₃ ²⁻ (not SO ₄ ²⁻ as no acid present)
(f) Add sodium hydroxide to a fresh portion of Y	No precipitate	Confirms Group I metal ion
(g) Add excess sodium hydroxide to the above solution	Still no precipitate	Confirms Na ⁺

(a) Complete the table above by recording your observations and inferences.

Done above.

(b) Identify the cation and anion present in substance Y.

Cation: Sodium ion (Na+)

Anion: Carbonate ion (CO32-)

(c) Write two ionic equations for confirmatory tests of these ions.

 $CO_3^{2-}(aq) + 2H^+(aq) \rightarrow CO_2(g) + H_2O(1)$

 $Na^{+}(aq) + OH^{-}(aq) \rightarrow no \text{ visible reaction (remains in solution)}$