THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2A

CHEMISTRY 2A

(ACTUAL PRACTICAL A)

Time: 3 Hours Thursday, 12 May 2015 a.m.

Instructions.

- 1. This paper consists of **three (3)** questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with the following:

Solution P: A 0.1 M solution of sodium hydroxide

Solution Q: A solution prepared by dissolving 0.950 g of a metallic nitrate (MNO₃) in 250 cm³ of distilled water

Indicator: Methyl orange

- (a) Using a pipette, measure 25.0 cm³ of solution Q into a conical flask and add 3 drops of methyl orange. Titrate with solution P from a burette until the solution turns from orange to yellow. Repeat the titration to get three consistent readings.
- (b) Record the titration results clearly in a table and calculate the average volume of sodium hydroxide used.
- (c) Write a balanced chemical equation for the reaction between sodium hydroxide and MNO₃.
- (d) Calculate the number of moles of NaOH used during titration.
- (e) Determine the number of moles and concentration of MNO₃ in solution Q.
- (f) Using the total mass of MNO₃ used to prepare the solution, calculate its molar mass.
- (g) Deduce the likely identity of metal M if it is a reactive alkali earth metal.

2. You are provided with:

Hydrogen peroxide solution (H₂O₂), freshly prepared manganese(IV) oxide powder (MnO₂), and distilled water.

You are to study how the amount of MnO₂ affects the rate of oxygen gas evolution during the decomposition of hydrogen peroxide.

Procedure:

- In each experiment, place 10 cm³ of hydrogen peroxide solution in a conical flask.
- Add different amounts of MnO₂ (as shown in the table) quickly and start timing.
- Use a glowing splint to test the presence of oxygen.
- Stop the stopwatch when bubbling ceases and record the time taken.

Experiment	Mass of	Volume of H ₂ O ₂	Time for bubbling to
	MnO ₂ (g)	(cm³)	stop (s)
1	0.1	10	
2	0.2	10	
3	0.4	10	
4	0.6	10	

- (a) Complete the table by conducting the experiment and recording the time for bubbling to stop.
- (b) For each trial, calculate the rate of reaction as 1/t and complete the table.
- (c) Plot a graph of rate (1/t) against mass of MnO₂.

- (d) What is the relationship between the rate of reaction and the amount of catalyst?
- (e) Write the balanced chemical equation for the decomposition of hydrogen peroxide.
- (f) What is the role of MnO₂ in this experiment?
- (g) State two safety precautions to observe when handling hydrogen peroxide.

3. A white powder labelled Substance Y is suspected to be an ionic compound. Carry out the following tests to identify the ions present.

Test	Observation	Inference
(a) Appearance of substance Y		
(b) Solubility in cold water		
(c) Perform a flame test using a platinum wire		
(d) Add dilute nitric acid to a small amount of Y		
(e) Add barium nitrate solution to the above solution		
(f) Add sodium hydroxide to a fresh portion of Y		
(g) Add excess sodium hydroxide to the above solution		

- (a) Complete the table above by recording your observations and inferences.
- (b) Identify the cation and anion present in substance Y.
- (c) Write two ionic equations for confirmatory tests of these ions.