# THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2A

# CHEMISTRY 2A (PRACTICAL A)

Time: 3 Hours

Year: 2020

## Instructions

- 1. This paper consists of three (03) questions.
- 2. Answer all the questions.
- 3. Question one (1) carries twenty (20) marks and the rest carry fifteen (15) marks each.
- Qualitative Analysis Guide Sheet authorized by NECTA and non-programmable calculators may be used.
- 5. Cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).
- 7. You may use the following constants: Molar masses: H = 1; C = 12; O = 16; Na = 23; S = 32. 1 Litre =  $1 \text{dm}^3 = 1000 \text{cm}^3$ .



Page 1 of 4

"11mu2020

- 1. You are provided with a solution of 10.6 g anhydrous sodium carbonate in 2 litres, labelled SS and dilute solution of sulphuric acid of unknown concentration, labeled AA. You are also given Methyl orange (MO).
  - (a) Perform titration procedure to determine the volume of sulphuric acid used for neutralization. Record your results in a relevant table of titration results.
  - (b) Comment on the colour change.
  - (c) Write a balanced chemical equation for the reaction taking place in the experiment.
  - (d) Find the molarity of SS.
  - (e) What mass in grams of sulphuric acid is present in one litre of the acid solution?
  - (f) What volume of sulphuric acid is required to complete neutralization, if the concentration of Na<sub>2</sub>CO<sub>3</sub> is doubled?
- 2. You are provided with solutions TT (0.22M Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) and HH (0.15M HCl). You are also given distilled water, stop watch/clock and a sheet of white A4 paper marked 'X.'

#### Procedure

- (i) Put a 50 cm<sup>3</sup> beaker on top of mark 'X' on the sheet of paper in such a way that the mark is clearly seen through the beaker.
- (ii) Using a measuring cylinder, measure out 2 ml of TT and 8 ml of distilled water and put them in the beaker on top of mark 'X'.
- (iii) Using another measuring cylinder, measure out 10ml of **HH** and pour it into a beaker containing **TT** and distilled water and immediately start a stop-watch or clock.
- (iv) Record the time taken for the mark 'X' to disappear.
- (v) Repeat the experiment with other concentrations as shown in Table 1. In each reaction the total volume of solution is 20 ml.

Table 1: Experimental data

| Expt | $S_2O_3^{-2}(cm^3)$ | H <sub>2</sub> O (cm <sup>3</sup> ) | HCl (cm <sup>3</sup> ) | Time, t (sec) | 1/t (sec <sup>-1</sup> ) |
|------|---------------------|-------------------------------------|------------------------|---------------|--------------------------|
| A    | 2                   | 8                                   | 10                     |               |                          |
| В    | 4                   | 6                                   | 10                     | 7.11.27       |                          |
| С    | 8                   | 2                                   | 10                     |               |                          |

## Questions

- (a) Complete Table 1 with appropriate data.
- (b) If the rate expression is:  $-d[S_2O_3^{-2}] = K[S_2O_3^{-2}]^c[H^+]^d$ , calculate the value of c. Take volume of solution as its concentration.
- (c) Given the value of d = 2, find the value of K.
- (d) Write the ionic equation for the reaction taking place in this experiment.
- (e) Plot a graph of 1/t (vertical axis) against the volume of sodium thiosulphate (horizontal axis).
- (f) Based on the nature of the graph in (e), suggest the order of reaction with respect to sodium thiosulphate:
- 3. You are given sample **Z** which contains one cation and one anion. Carry out qualitative analysis to identify the cation and anion present in a salt using the tests given in Table 2.

Table 2: Experimental Observation and Inferences.

| S/N | Experiment                                                                                                                                                                  | Observation | Inference |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| (a) | Observe the appearance of sample Z.                                                                                                                                         |             |           |
| (b) | <ul> <li>Dissolve a small amount of sample Z in distilled water and shake it well. Study its solubility.</li> <li>Divide the sample solution into four portions.</li> </ul> |             |           |
| (c) | To the first portion, add conc. H <sub>2</sub> SO <sub>4</sub> .                                                                                                            |             |           |
| (d) | To the second portion, add iron II sulphate (FeSO <sub>4</sub> ) followed by conc. H <sub>2</sub> SO <sub>4</sub> .                                                         |             |           |
| (e) | To the third portion, add dilute NaOH drop wise till in excess.                                                                                                             |             |           |
| (f) | To the fourth portion, add dilute NH <sub>4</sub> OH drop wise till in excess.                                                                                              |             |           |

### Questions

- (a) Complete the table with appropriate information.
- (b) Give the name and chemical formula of the cation in Z.
- (c) Write down the chemical formula of Z.

- (d) What is the common name for experiment (d)?
- (e) What is the difference between experiment (e) and (f)?