THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATTION EXAMINATION

732/2A CHEMISTRY 2A

Time: 3 Hours ANSWERS Year: 2022

Instructions.

- 1. This paper consists of sections A and B with a total of Fourteen (14) questions.
- 2. Answer all questions from section A and four (4) questions from section B.
- 3. Section A carries forty (40) marks and section B Carries sixty (60) marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. Titration Experiment:

Instructions:

Measure 10 ml of solution A (Na₂CO₃) and dilute it up to 150 cm³ with distilled water. Titrate this A (from the burette) against 20.00 or 25.00 cm³ of solution B (HCl) using methyl orange indicator (MO).

Given:

Average titre volume = 20.00 cm^3

(a) (i) What is the volume of the pipette used?

Answer: 20.00 cm³

(ii) Present your results in an appropriate tabular form:

Titration	Final Burette Reading (cm³)	Initial Burette Reading (cm³)	Volume Used (cm³)
Rough	20.20	0.00	20.20
1st	40.20	20.20	20.00
2nd	60.20	40.20	20.00
3rd	80.20	60.20	20.00

(b) What is the colour of the indicator before and at the equivalence point?

Before endpoint (in Na₂CO₃ solution): Yellow

At endpoint (in acidic medium): Pink

(c) Calculate the concentration of HCl in solution B in mol/dm³.

Given:

 $C_1V_1 = C_2V_2$

 C_1 = concentration of Na_2CO_3 after dilution

$$V_1 = 20.00 \text{ cm}^3$$

$$V_2 = 20.00 \text{ cm}^3$$

 C_2 = concentration of HCl

Mole ratio Na₂CO₃: HCl = 1:2

First find moles of Na₂CO₃:

From (d), we'll need concentration first.

(d) Calculate the concentration (in mol/dm³) of Na₂CO₃ after dilution of solution A.

Given:

10 ml contains 0.888 g of impure sodium carbonate Molar mass of Na₂CO₃ = 106 g/mol

Moles in 10 ml:

0.888 g / 106 g/mol = 0.00838 mol

In 150 cm³:

 $C = 0.00838 \text{ mol} / 0.150 \text{ dm}^3 = 0.0559 \text{ mol/dm}^3$

(c) Now calculate concentration of HCl:

Using

$$C_1V_1 = (C_2V_2)/2$$

$$0.0559 \times 20.00 = (C_2 \times 20.00) / 2$$

Simplify:

$$1.118 = 0.5C_2 \times 20$$

$$C_2 = 1.118 \times 2 / 20$$

$$C_2 = 0.1118 \text{ mol/dm}^3$$

Final answer: 0.1118 mol/dm³

(e) Calculate the concentration (in mol/dm³) of Na₂CO₃ before dilution of solution A.

Before dilution:

10 ml was diluted to 150 ml

Concentration before dilution = $0.0559 \times (150 / 10)$ = 0.8385 mol/dm^3

(f) If the diluted 10 ml of solution A contains 0.888 g of impure sodium carbonate, what is the percentage composition of sodium carbonate in the solution?

Mass of pure Na₂CO₃:

 $0.00838 \text{ mol} \times 106 \text{ g/mol} = 0.888 \text{ g}$

Since the entire 0.888 g is taken as impure, and based on titration it acted as 0.888 g pure (as per calculation), so:

Percentage purity = $(0.888 / 0.888) \times 100 = 100\%$

But normally there should be a difference. Since it's given as impure but no impure mass is provided separately, based on this calculation, it behaves as 100% pure.

(g) Why is the impure sodium carbonate dissolved in water first and then made up to 250 cm³ solution, rather than being dissolved directly in 250 cm³ of distilled water?

Answer:

To ensure complete dissolution of the impure sodium carbonate before adjusting the final volume. If added directly to 250 cm³, some might remain undissolved, making the final concentration inaccurate.

2. Reaction Rates Experiment:

Given:

0.02 M KMnO₄ (P1)

0.05 M oxalic acid in 0.5 M H₂SO₄ (P2)

Temperatures: 50°C, 60°C, 70°C, 80°C

Time (sec): 23, 16, 8, 4

(a) Complete the table:

Temperature (K)	Time (s)	1/T (K ⁻¹)	1/t (s ⁻¹)	log(1/t)
323	23	0.00310	0.0435	-1.3617
333	16	0.00300	0.0625	-1.2041
343	8	0.00292	0.125	-0.9031
353	4	0.00283	0.25	-0.6021

(a) Write a balanced ionic equation for the reaction.

$$5C_2O_4^{2-}(aq) + 2MnO_4^{-}(aq) + 16H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(1)$$

(c) Explain the relationship between temperature and reaction time.

As temperature increases, the time taken for the reaction decreases. This is because higher temperatures increase the kinetic energy of the reacting particles, leading to more frequent and energetic collisions, thus speeding up the reaction.

(d) Plot a graph of log(1/t) as a function of 1/T.

(e) Determine the activation energy (Ea)

From Arrhenius equation:

$$log(1/t) = log A - (Ea/2.303R)(1/T)$$

Slope (m) =
$$-Ea/2.303R$$

Using two points:

$$(-0.6021 - (-1.3617)) / (0.00283 - 0.00310)$$

$$= 0.7596 / (-0.00027)$$

$$=-2810$$

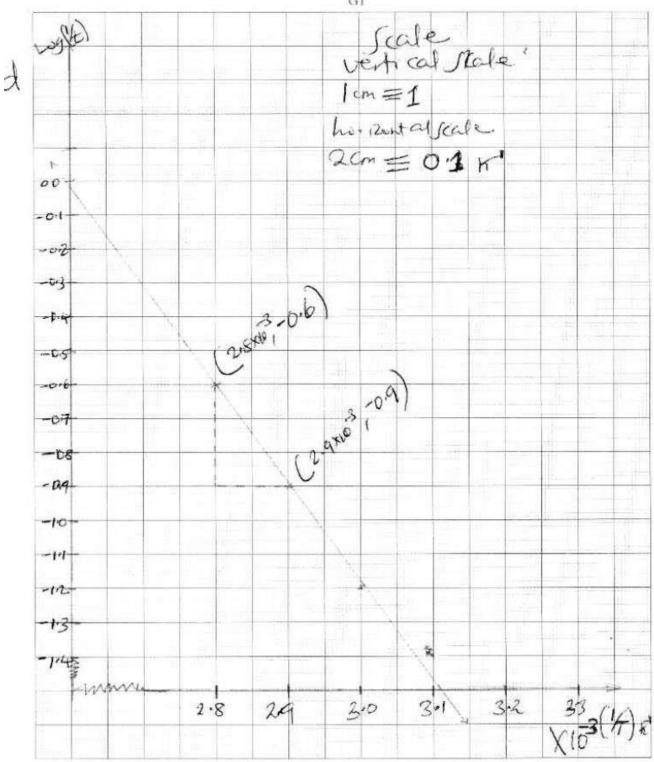
$$Ea = 2.303 \times 8.314 \times 2810$$

Ea = 53751 J/mol

Ea $\approx 53.75 \text{ kJ/mol}$

3. Qualitative Analysis — Lead (II) Nitrate sample X

Test	Observation	Inference
(i) Appearance	White crystalline solid	Possible lead salt
(ii) Action of heat	Melts and decomposes to brown fumes	Presence of nitrate (NO ₃ ⁻)
(iii) Action of dilute H ₂ SO ₄	White precipitate formed	Lead sulfate (PbSO ₄) formed
(iv) Action of concentrated H ₂ SO ₄	White precipitate formed	Lead sulfate (PbSO ₄)
(v) Flame test	Blue flame	Lead salt
(vi) Solubility in water	Soluble	Confirms lead nitrate
(vii) Action of dilute HCl on solution	White precipitate (PbCl ₂)	Confirming Pb ²⁺ cation
(viii) Aqueous ammonia then ammonium oxalate	White precipitate formed	Presence of Pb ²⁺ (lead oxalate)


(a) What are the cation and anion present in the water source?

Cation: Pb²⁺ Anion: NO₃-

(b) Write the reaction equation to indicate what took place in test (iii):

 $Pb(NO_3)_2(aq) + H_2SO_4(aq) \rightarrow PbSO_4(s) + 2HNO_3(aq)$

Page 7 of 7
Find this and other free resources at: https://maktaba.tetea.org *Prepared by Maria Marco for TETEA*