THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2009

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with the following:

Solution coded G1 (a solution of hydrochloric acid with unknown concentration)

Solution G2, a standard sodium carbonate solution containing 2.65 g of Na₂CO₃ per dm³

Methyl orange indicator

Instruction: Titrate G2 (from the burette) against G1 (in the titration flask) using methyl orange as the indicator. Record your results including one rough and three accurate titrations in a tabular form.

Questions

- (i) The colour change observed during the titration is from yellow to orange-pink at the endpoint. This is due to the pH change near 4 when all carbonate is neutralized by the acid.
- (ii) The volume of the pipette used is 25.0 cm³. This is a standard volume used in titrations to transfer a known amount of analyte.
- (iii) If the average titre volume recorded is around 25.0 cm³, then the average volume of solution G2 used to neutralize G1 is **25.0 cm³**.
- (iv) The balanced chemical equation between HCl and Na₂CO₃ is:

$$Na_2CO_3$$
 (aq) + 2HCl (aq) \rightarrow 2NaCl (aq) + H₂O (l) + CO₂ (g)

(v) The ionic equation is:

$$CO_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow H₂O (l) + CO₂ (g)

(vi) Molar mass of Na₂CO₃ = $23 \times 2 + 12 + 16 \times 3 = 106$ g/mol

Concentration of G2 = $2.65 \text{ g/dm}^3 \div 106 \text{ g/mol} = 0.025 \text{ mol/dm}^3$

From the equation:

1 mol Na₂CO₃ reacts with 2 mol HCl

Moles of Na₂CO₃ in 25.0 cm³ = $0.025 \text{ mol/dm}^3 \times 25.0 \text{ cm}^3 \div 1000 = 0.000625 \text{ mol}$

Then moles of HCl = $0.000625 \text{ mol} \times 2 = 0.00125 \text{ mol}$

So concentration of G1 (HCl) = $0.00125 \text{ mol} \div 25.0 \text{ cm}^3 \times 1000 = 0.05 \text{ mol/dm}^3$

- **2.** You are provided with:
 - 0.1 M sodium thiosulphate labeled **TQ**
 - 0.1 M hydrochloric acid labeled TR

Distilled water

A stopwatch, beaker, test tubes, thermometer, and a sheet of paper with a black letter "Z"

- (i) Room temperature is approximately 25°C, which is 298 K.
- (ii) The mark "Z" disappeared because the reaction between thiosulphate and hydrochloric acid produces sulfur, which forms a cloudy precipitate that obscures the black letter on the paper.
- (iii) Sample data (you can adjust):

Experiment	Temperature (°C)	Temperature (K)	Time (s)
1	30	303	60
2	40	313	42
3	50	323	28
4	60	333	20
5	70	343	14

(iv) The balanced chemical equation is:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + SO_2(g) + S(s)$$

(v) The net ionic equation is:

$$S_2O_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow H₂O (l) + SO₂ (g) + S (s)

- (vi) The graph of temperature (K) vs time (s) would show a **negative correlation**. As temperature increases, time decreases, indicating that the reaction proceeds faster at higher temperatures.
- (vii) Conclusion: Increasing the temperature increases the rate of reaction. This is due to higher kinetic energy of particles, leading to more frequent and energetic collisions.
- **3.** You are given a salt coded **Q**. It contains one cation and one anion.
- (i) Sample table of observations and inferences:

Test	Observation	Inference
Appearance	White crystalline solid	Could be a metal salt
Heating	No water or colour change	No water of crystallization
Solubility in water	Soluble	Ionic compound
NaOH (few drops)	White precipitate forms	Possible Zn ²⁺ , Al ³⁺ or Pb ²⁺
NaOH (excess)	Precipitate dissolves	Zn ²⁺ likely
Aqueous ammonia (few drops)	White precipitate	Zn^{2+} or Al^{3+}
Aqueous ammonia (excess)	Precipitate dissolves	Confirms Zn ²⁺
BaCl ₂ + dilute HCl	White precipitate forms	Presence of SO ₄ ²⁻

AgNO ₃ + dilute HNO ₃ No precipitate No Cl ⁻ or Br ⁻ present	AgNO ₃ + dilute HNO ₃	No precipitate	No Cl ⁻ or Br ⁻ present
--	---	----------------	---

(ii) Balanced chemical equation for test with NaOH:

$$Zn^{2+}$$
 (aq) + 2NaOH (aq) \to Zn(OH)₂ (s) + 2Na⁺ (aq)

- (iii) The cation is Zn^{2+} , and the anion is SO_4^{2-} , so salt Q is zinc sulfate (ZnSO₄).
- (iv) Reaction between zinc sulfate and sodium carbonate:

$$ZnSO_4$$
 (aq) + Na_2CO_3 (aq) $\rightarrow ZnCO_3$ (s) + Na_2SO_4 (aq)