THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2010

Instructions.

- 1. This paper consists of **three (3)** questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with the following:

Solution coded **H1**, which is a solution of sodium hydroxide of unknown concentration Solution **H2**, a standard hydrochloric acid solution containing 3.65 g of HCl per dm³

Phenolphthalein indicator

- (i) The colour change observed is **pink to colourless**. Phenolphthalein is pink in basic solution (NaOH), and turns colourless when the solution becomes neutral or acidic after HCl is added.
- (ii) The pipette used in this titration is 25.0 cm³, which is standard for most acid-base titrations.
- (iii) Assuming accurate titres were around 25.0 cm³, the average volume of solution H2 used to neutralize H1 is **25.0 cm³**.
- (iv) Balanced chemical equation:

NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l)

(v) Ionic equation:

$$OH^{-}(aq) + H^{+}(aq) \rightarrow H_2O(1)$$

(vi) Molar mass of HCl = 1 + 35.5 = 36.5 g/mol

Concentration of H2 = $3.65 \text{ g/dm}^3 \div 36.5 \text{ g/mol} = 0.1 \text{ mol/dm}^3$

Moles of HCl in 25.0 cm³ = $0.1 \times 25.0 \div 1000 = 0.0025$ mol

From the equation, 1 mol of NaOH reacts with 1 mol of HCl

So, moles of NaOH in $25.0 \text{ cm}^3 = 0.0025 \text{ mol}$

Therefore, concentration of NaOH (H1) = $0.0025 \text{ mol} \div 25.0 \text{ cm}^3 \times 1000 = 0.1 \text{ mol/dm}^3$

- **2.** You are provided with:
- 0.1 M potassium iodide solution labeled **M1**
- 0.1 M hydrogen peroxide solution labeled M2
- Dilute sulfuric acid labeled M3
- A starch indicator solution
 - (i) Room temperature is approximately 298 K.
 - (ii) The blue-black colour appeared due to the formation of iodine (I₂) from the reaction between iodide ions and hydrogen peroxide. Iodine then reacts with starch to give a blue-black complex.

(iii) Example of completed table:

Experiment	Temperature (°C)	Temperature (K)	Time (s)
1	30	303	65
2	40	313	45
3	50	323	28
4	60	333	18
5	70	343	12

(iv) Balanced chemical equation:

$$H_2O_2(aq) + 2KI(aq) + H_2SO_4(aq) \rightarrow I_2(aq) + K_2SO_4(aq) + 2H_2O(1)$$

(v) Ionic equation:

$$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) \rightarrow I_2(aq) + 2H_2O(1)$$

- (vi) The graph of temperature (K) against time (s) will show a downward curve, as temperature increases, reaction time decreases.
- (vii) Conclusion: The rate of reaction increases with increase in temperature due to greater kinetic energy of particles leading to faster collisions and quicker product formation.

3. You are given a salt coded **R**.

(i) Sample table:

Test	Observation	Inference
Appearance	White crystalline solid	Ionic compound
Action of heat	Gas with pungent smell	Possible
	evolved	nitrate/nitrite
Solubility in water	Soluble	Soluble ionic salt
NaOH (few drops)	Light blue precipitate forms	May contain Cu ²⁺
NaOH (excess)	Precipitate remains insoluble	Confirms Cu ²⁺
Aqueous ammonia (few	Blue precipitate forms	Cu ²⁺ likely
drops)		
Aqueous ammonia (excess)	Deep blue solution forms	Confirms Cu ²⁺
BaCl ₂ + HNO ₃	No precipitate	No SO ₄ ²⁻ or CO ₃ ²⁻
AgNO ₃ + HNO ₃	White precipitate	Presence of Cl ⁻

(ii) Balanced chemical equation:

$$Cu^{2+}$$
 (aq) + 2NaOH (aq) \rightarrow Cu(OH)₂ (s) + 2Na⁺ (aq)

- (iii) The cation is Cu²⁺ and the anion is Cl⁻. So salt R is copper(II) chloride (CuCl₂).
- (iv) Reaction with sodium carbonate:

$$CuCl_2(aq) + Na_2CO_3(aq) \rightarrow CuCO_3(s) + 2NaCl(aq)$$