THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B

CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours Wednesday, 18th May 2011 a.m

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. Table 1: Titration results

Titration No.	Trial	1	2	3
Final volume (cm³)	22.4	44.8	67.2	89.6
Initial volume (cm³)	0.0	22.4	44.8	67.2
Volume used (cm³)	22.4	22.4	22.4	22.4

(a) Find the average titre value for this experiment.

Average titre =
$$(22.4 + 22.4 + 22.4 + 22.4) / 4$$

= 22.4 cm^3

(b) Write a balanced chemical equation for this reaction.

$$Na_2CO_3 + 2HC1 ----> 2NaC1 + CO_2 + H_2O$$

(c) Why was methyl orange indicator used in this practical?

Because methyl orange is suitable for detecting the end-point of a titration between a strong acid (HCl) and a weak base (Na₂CO₃). It changes colour distinctly from yellow in alkaline medium to orange-red in acidic medium.

(d) Calculate the concentration of Na₂CO₃ in:

(i) mol/dm³

Molar mass of $Na_2CO_3 = 106$ g/mol

Mass in 250 cm³ = 2.7 g

Moles = 2.7 / 106

= 0.02547 mol

Molarity = $0.02547 \text{ mol} / 0.250 \text{ dm}^3$

 $= 0.1019 \text{ mol/dm}^3$

(ii) g/dm³

Concentration = 0.1019×106

 $= 10.8 \text{ g/dm}^3$

(e) Determine the value of W in the formula Na₂CO₃·W H₂O

Given 2.7 g of hydrated salt in 250 cm³

But pure Na₂CO₃ molarity = 0.1019 mol/dm³

Mass of Na₂CO₃·W H₂O in 1 dm³ = 2.7×4

= 10.8 g

Molar mass of hydrated salt = 10.8 / 0.1019

 $= 106 \times (W factor)$

106 + 18W = (10.8 / 0.1019)

= 106 + 18W = 106

Which means W = 0

Therefore, no water of crystallisation — the salt is anhydrous (Na₂CO₃)

(f) State three uses of this titration

- 1. Determining the concentration of hydrochloric acid.
- 2. Standardising acid solutions in laboratories.
- 3. Quality control in industries producing soft drinks and detergents.

2. Table 2: Experimental results

Temperature	T(K)	Time (s)	(K ⁻¹)	(S ⁻¹)
50°C	323	60	0.00310	0.0167
60°C	333	40	0.00300	0.0250
70°C	343	25	0.00292	0.0400
80°C	353	17	0.00283	0.0588

(a) Write the ionic equation for the formation of the cloud in the solution

$$S_2O_3^{2-} + 2H^+ ----> SO_2 + S \text{ (precipitate)} + H_2O$$

(b) Plot a graph of log(1/t) against 1/T and find the slope

We can compute log(1/t):

T(K)	1/T (K ⁻¹)	1/t (s ⁻¹)	log(1/t)
323	0.00310	0.0167	-1.78
333	0.00300	0.0250	-1.60
343	0.00292	0.0400	-1.40
353	0.00283	0.0588	-1.23

Plot these points, draw the best fit line.

Slope =
$$\Delta(\log 1/t) / \Delta(1/T)$$

Pick two points:

(-1.78, 0.00310) and (-1.23, 0.00283)

Slope =
$$(-1.23 - (-1.78)) / (0.00283 - 0.00310)$$

$$= (0.55) / (-0.00027)$$

= -2037

(c) Use the relation slope = -Ea / 2.303R to determine activation energy

 $R = 8.314 \text{ J/mol} \cdot \text{K}$

Ea = - (slope $\times 2.303 \times R$) = - (-2037 $\times 2.303 \times 8.314$)

= 38998 J/mol = 39.0 kJ/mol

3. Systematic Qualitative Analysis of Sample Q

Test	Observation	Inference
Appearance	White crystalline solid	Possible chloride or carbonate
Flame test	Bright yellow flame	Sodium ion (Na ⁺) present
Solubility	Soluble in water	Ionic salt
Action with dilute HNO ₃	Effervescence, gas turns lime water milky	CO₃²⁻ present
Action with AgNO ₃ solution	White precipitate	Cl ⁻ present

Conclusion

Cation: Na⁺ Anion: Cl⁻

Formula of salt: NaCl

Name: Sodium chloride