THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2012

Instructions.

- 1. This paper consists of **three (3)** questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with:

Solution coded K1: sulfuric acid of unknown concentration

Solution K2: sodium hydroxide, 4.00 g NaOH in 1 dm³

Phenolphthalein indicator

- (i) The colour change observed is **pink to colourless**. This occurs because phenolphthalein is pink in basic solution and turns colourless when neutralized by the acid.
- (ii) The volume of the pipette used is **25.0 cm**³, which is standard in titration to transfer a known volume of base (K2).
- (iii) If the average titre is 25.0 cm³, then the average volume of K1 used to neutralize K2 is 25.0 cm³.
- (iv) Balanced chemical equation:

$$H_2SO_4$$
 (aq) + $2NaOH$ (aq) $\rightarrow Na_2SO_4$ (aq) + $2H_2O$ (l)

(v) Ionic equation:

$$2OH^{-}(aq) + 2H^{+}(aq) \rightarrow 2H_{2}O(1)$$

(vi) Molar mass of NaOH = 23 + 16 + 1 = 40 g/mol

Concentration of K2 = $4.00 \text{ g/dm}^3 \div 40 \text{ g/mol} = 0.1 \text{ mol/dm}^3$

Moles of NaOH in 25.0 cm³ =
$$0.1 \times 25.0 \div 1000 = 0.0025$$
 mol

From the balanced equation, 2 mol NaOH reacts with 1 mol H₂SO₄

So moles of
$$H_2SO_4 = 0.0025 \div 2 = 0.00125$$
 mol

Volume of acid used =
$$25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$$

Concentration of $H_2SO_4 = 0.00125 \text{ mol} \div 0.025 \text{ dm}^3 = 0.05 \text{ mol/dm}^3$

2. You are provided with:

- Y1: 0.1 M hydrochloric acid
- Y2: magnesium ribbon
- Stopwatch and thermometer
 - (i) Room temperature is approximately 298 K.
 - (ii) Effervescence is caused by the release of **hydrogen gas (H₂)** during the reaction between magnesium and hydrochloric acid.
 - (iii) Sample data table:

Experiment	Temperature (°C)	Temperature (K)	Time (s)
1	30	303	60
2	40	313	40
3	50	323	27
4	60	333	18
5	70	343	10

(iv) Balanced chemical equation:

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

(v) Ionic equation:

$$Mg(s) + 2H^{+}(aq) \rightarrow Mg^{2+}(aq) + H_{2}(g)$$

- (vi) The graph of temperature (K) against time (s) would show that as temperature increases, reaction time decreases. This indicates a faster reaction rate.
- (vii) Conclusion: Higher temperature increases the kinetic energy of particles, leading to faster collisions and a faster reaction.
- 3. You are given a salt coded W.
- (i) Sample table of results:

Test	Observation	Inference
Appearance	White crystalline solid	Likely ionic salt
Heating	Brown fumes evolved	Suggests nitrate (NO ₃ ⁻)
Solubility in water	Soluble	Soluble ionic compound
NaOH (few drops)	Brown precipitate formed	Fe ³⁺ likely
NaOH (excess)	Precipitate remains	Confirms Fe ³⁺
Aqueous ammonia (few drops)	Brown precipitate	Confirms Fe ³⁺
Aqueous ammonia (excess)	No further change	Fe ³⁺ confirmed
Ba(NO ₃) ₂ + dilute HNO ₃	No precipitate	No SO ₄ ²⁻ or CO ₃ ²⁻
AgNO ₃ + HNO ₃	No precipitate	No Cl ⁻ , Br ⁻ or I ⁻

(ii) Balanced equation for NaOH test:

$$Fe^{3+}$$
 (aq) + 3NaOH (aq) \rightarrow Fe(OH)₃ (s) + 3Na⁺ (aq)

- (iii) The cation is Fe³⁺ and the anion is NO₃⁻, so salt W is iron(III) nitrate (Fe(NO₃)₃).
- (iv) Reaction with sodium carbonate:

$$2Fe(NO_3)_3 (aq) + 3Na_2CO_3 (aq) \rightarrow 2Fe_2(CO_3)_3 (s) + 6NaNO_3 (aq)$$