THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2013

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

- 1. A student was given a solution labeled L1, which is a solution of nitric acid of unknown concentration. She was also given a solution labeled L2, which contains 5.3 g of sodium carbonate (Na₂CO₃) dissolved in 1 dm³ of solution. Using methyl orange as the indicator, she was instructed to determine the concentration of L1 through titration.
- (a) The colour change observed at the end point is from **yellow to orange-pink**. Methyl orange turns yellow in alkaline solution and orange-pink in acidic solution after complete neutralization.
- (b) The average volume of nitric acid delivered from the burette is 25.0 cm³, which is common and acceptable as a standard titre volume.

(c)

Balanced chemical equation:

$$Na_2CO_3(aq) + 2HNO_3(aq) \rightarrow 2NaNO_3(aq) + H_2O(1) + CO_2(g)$$

Ionic equation:

$$CO_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow H₂O (l) + CO₂ (g)

(d)

Molar mass of Na₂CO₃ = $23 \times 2 + 12 + 16 \times 3 = 106$ g/mol

Moles of Na₂CO₃ =
$$5.3 \text{ g} \div 106 \text{ g/mol} = 0.05 \text{ mol/dm}^3$$

In 25.0 cm³ of L2:

$$0.05 \times 25 \div 1000 = 0.00125 \text{ mol of Na2CO3 used}$$

(e)

From the equation, 1 mol of Na₂CO₃ reacts with 2 mol of HNO₃

Moles of HNO₃ =
$$0.00125 \times 2 = 0.0025$$
 mol

Volume of L1 used =
$$25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$$

Concentration of L1 = $0.0025 \text{ mol} \div 0.025 \text{ dm}^3 = 0.1 \text{ mol/dm}^3$

- **2.** In a study of the effect of temperature on reaction rate:
- (a) Temperatures in Kelvin:

$$30^{\circ}C = 303 \text{ K}$$

$$40^{\circ}C = 313 \text{ K}$$

$$50^{\circ}C = 323 \text{ K}$$

$$60^{\circ}C = 333 \text{ K}$$

$$70^{\circ}C = 343 \text{ K}$$

(b) The cross disappears because the reaction produces **sulfur precipitate**, which turns the solution cloudy and blocks the view of the cross.

(c) Example of completed table:

Temperature (°C)	Temperature (K)	Time (s)
30	303	58
40	313	42
50	323	30
60	333	20
70	343	12

(d)

Balanced chemical equation:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$$

Net ionic equation:

$$S_2O_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow SO₂ (g) + S (s) + H₂O (l)

- (e) The graph of temperature (K) against time (s) would show a **downward slope**, indicating that as temperature increases, the reaction time decreases.
- (f) The reaction becomes **faster at higher temperatures** due to increased kinetic energy of particles, leading to more frequent and energetic collisions.
- **3.** A white salt labeled **M** was given for qualitative analysis.
- (i) Table of observations and inferences:

Test	Observation	Inference
Heating dry salt	Brown fumes evolved	Presence of nitrate (NO ₃ ⁻)
Solubility in water	Soluble	Soluble ionic salt
NaOH (few drops)	White gelatinous precipitate	Possible Al ³⁺
NaOH (excess)	Precipitate dissolves	Confirms Al ³⁺
Ammonia (few drops)	White precipitate	Could be Al3+ or Zn2+
Ammonia (excess)	Precipitate remains	Confirms Al ³⁺
HCl + BaCl ₂	No precipitate	No SO ₄ ²⁻ or CO ₃ ²⁻
AgNO ₃ + HNO ₃	No precipitate	No halide ions present

(ii) The cation is Al3+, and the anion is NO3-. Therefore, salt M is aluminium nitrate (Al(NO3)3).

(iii)

Reaction with sodium hydroxide:

$$Al^{3+}$$
 (aq) + 3NaOH (aq) \rightarrow Al(OH)₃ (s) + 3Na⁺ (aq)

(iv)

Reaction with sodium carbonate:

 $2Al(NO_3)_3\left(aq\right) + 3Na_2CO_3\left(aq\right) \rightarrow 2Al(OH)_3\left(s\right) + 3CO_2\left(g\right) + 6NaNO_3\left(aq\right)$