THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B

CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours Wednesday, 14th May 2014 a.m.

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

- 1. During a practical session, you are provided with two solutions:
 - N1, a solution of ethanoic acid of unknown concentration
 - N2, a solution of sodium hydroxide containing 4.0 g of NaOH per dm³

Using phenolphthalein as an indicator, your task is to determine the concentration of N1 by titrating it against N2.

Instructions:

Fill the burette with N1

Use a pipette to transfer 25.0 cm³ of N2 into a conical flask

Add two drops of phenolphthalein and titrate until the colour changes

Ouestions

- (a) What colour change will be observed at the end point of the titration?
- (b) If the average volume of N1 used was 25.0 cm³, calculate the number of moles of NaOH in 25.0 cm³.
- (c) Write a balanced chemical equation for the neutralization between ethanoic acid and sodium hydroxide.
- (d) Determine the concentration of N1 in mol/dm³.
- (e) Convert the result in (d) into g/dm³ (Molar mass of CH₃COOH = 60 g/mol).
- (f) What is the role of phenolphthalein in this experiment?
- **2.** In a reaction kinetics experiment, you are provided with:
 - 0.1 M potassium iodide solution labeled P1
 - 0.1 M hydrogen peroxide solution labeled **P2**
 - 0.1 M sulfuric acid labeled P3

Starch solution

You are instructed to mix equal volumes of **P1**, **P2**, and **P3** in a beaker and add starch solution immediately. The time taken for a blue-black colour to appear is recorded. The experiment is repeated at different temperatures: 30°C, 40°C, 50°C, 60°C, and 70°C.

Questions

- (a) State the reason for the appearance of the blue-black colour in this reaction.
- (b) Complete the table with appropriate temperatures in Kelvin and sample time values.

Temperature (°C)	Temperature (K)	Time (s)
30		65
40		45
50		30
60		18
70		10

- (c) Write the ionic equation showing the role of hydrogen peroxide in this reaction.
- (d) Describe how temperature affects the reaction rate.
- (e) Plot a graph of temperature (K) on the x-axis against time (s) on the y-axis.
- (f) If you were to repeat this experiment at 20°C, what would you expect to happen to the reaction time? Justify your answer.
- **3.** You are given a sample of a salt coded **X**. Perform the following tests to determine the cation and anion in the salt:

Procedure:

- (a) Observe and describe the physical appearance of the salt X.
- (b) Heat a small amount in a dry test tube and note any changes.
- (c) Dissolve the salt in water and divide the solution into three portions.
- (d) To the first portion, add aqueous sodium hydroxide dropwise, then in excess.
- (e) To the second portion, add aqueous ammonia dropwise, then in excess.
- (f) To the third portion, add barium chloride followed by dilute HCl.
- (g) To another portion, add silver nitrate followed by dilute nitric acid.

Ouestions

- (i) Record your observations and inferences in a table.
- (ii) Identify the cation and anion present in salt **X**.
- (iii) Write a balanced chemical equation for the reaction with sodium hydroxide.
- (iv) Write the reaction between salt **X** and sodium carbonate.