THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2015

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

- 1. You are provided with:
- R1: Potassium hydroxide (unknown concentration)
- **R2**: Sulphuric acid, 0.05 mol/dm³
- Phenolphthalein indicator
 - (a) The colour change observed at the end point is **pink to colourless**, indicating the base (R1) has been neutralized by the acid.
 - (b) Average volume of R2 used = 25.0 cm^3
 - (c) Balanced chemical equation:

$$2KOH(aq) + H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(1)$$

- (d) Moles of H_2SO_4 used = 0.05 mol/dm³ × 25.0 cm³ ÷ 1000 = **0.00125 mol**
- (e) From the equation, 1 mol H₂SO₄ reacts with 2 mol KOH

So, moles of KOH = $0.00125 \text{ mol} \times 2 = 0.0025 \text{ mol}$

(f) Volume of R1 used = $25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$

Concentration of R1 = $0.0025 \div 0.025 = 0.1 \text{ mol/dm}^3$

(g) Molar mass of KOH = 39 + 16 + 1 = 56 g/mol

Concentration in $g/dm^3 = 0.1 \text{ mol/dm}^3 \times 56 \text{ g/mol} = 5.6 \text{ g/dm}^3$

2. You are given:

- T1: sodium thiosulphate
- T2: hydrochloric acid
 - (a) The mark "+" disappears due to the formation of **sulfur precipitate**, which makes the solution cloudy and blocks the mark from view.
 - (b) Completed table:

Experiment	T1 (cm ³)	Water (cm³)	T2 (cm ³)	Time (s)
1	10	0	10	22
2	8	2	10	28
3	6	4	10	35
4	4	6	10	48
5	2	8	10	70

(c)

Balanced chemical equation:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + SO_2(g) + S(s)$$

Ionic equation:

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow H_2O(1) + SO_2(g) + S(s)$$

(d) As the concentration of T1 (sodium thiosulphate) decreases, the **rate of reaction decreases**, leading to **longer reaction times**.

- (e) Precautions:
- Ensure all solutions are measured accurately using clean apparatus
- Start timing immediately after mixing the reactants to get reliable time readings
 - **3.** You are given salt **Z**.
 - (i) Observations and inferences:

Test	Observation	Inference
Appearance	White crystalline solid	Ionic salt
Heating	Brown fumes, smell of NO ₂	Presence of nitrate
Solubility	Soluble in water	Confirms ionic nature
NaOH (few drops)	White precipitate formed	Possibly Pb ²⁺ or Al ³⁺
NaOH (excess)	Precipitate remains insoluble	Confirms Pb ²⁺
Ammonia (few drops)	White precipitate	Confirms Pb ²⁺
Ammonia (excess)	No change	Confirms Pb ²⁺
BaCl ₂ + HCl	No precipitate	No sulfate or carbonate
AgNO ₃ + HNO ₃	No precipitate	No halide present

(ii) Cation is Pb²⁺, anion is NO₃-, hence the salt is lead(II) nitrate (Pb(NO₃)₂).

(iii)

With NaOH:

$$Pb^{2+}(aq) + 2NaOH(aq) \rightarrow Pb(OH)_2(s) + 2Na^{+}(aq)$$

With heat

$$2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$$

- (iv) To distinguish it from a chloride, add AgNO3 to a fresh solution:
- A chloride would form a white precipitate of AgCl
- Nitrate gives **no precipitate**, confirming it is not a chloride