THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2016

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with:

- S1: Sodium hydroxide (unknown concentration)
- **S2**: 3.65 g of HCl dissolved in 1 dm³
- Methyl orange indicator
- (a) The colour change is **yellow to orange-pink**, indicating the neutralization point between a strong acid and strong base.
- (b) Balanced chemical equation:

NaOH (aq) + HCl (aq)
$$\rightarrow$$
 NaCl (aq) + H₂O (l)

(c) Molar mass of HCl = 1 + 35.5 = 36.5 g/mol

Concentration of S2 = $3.65 \div 36.5 = 0.1 \text{ mol/dm}^3$

- (d) Moles of HCl in 25.0 cm³ = $0.1 \times 25 \div 1000 = 0.0025$ mol
- (e) From the equation, mole ratio is 1:1

So, moles of NaOH = 0.0025 mol

(f) Volume of NaOH used = $25.0 \text{ cm}^3 = 0.025 \text{ dm}^3$

Concentration in mol/dm³ = $0.0025 \div 0.025 = 0.1 \text{ mol/dm}^3$

Concentration in $g/dm^3 = 0.1 \times 40 = 4.0 \text{ g/dm}^3$

(g) Reasons for using NaOH pellets:

NaOH pellets are more stable and easier to store than aqueous NaOH which absorbs CO2 from air.

Using pellets allows the technician to prepare a fresh, accurate concentration of base as needed.

2. You are given:

W1: potassium iodide

W2: hydrogen peroxide

W3: sulfuric acid

Starch indicator

- (a) The blue-black colour appears due to the formation of **iodine** (I₂), which reacts with starch to form a blue-black complex.
- (b) Completed table:

Temperature (°C)	Temperature (K)	Time (s)
25	298	72
35	308	52
45	318	36
55	328	24
65	338	14

(c) Net ionic equation:

 $H_2O_2\left(aq\right) + 2I^-\left(aq\right) + 2H^+\left(aq\right) \rightarrow I_2\left(aq\right) + 2H_2O\left(l\right)$

- (d) Graph: Plot temperature (K) on the x-axis and time (s) on the y-axis. The graph will show a **decreasing curve**, indicating that time decreases as temperature increases.
- (e) Temperature increases the **rate of reaction**. This is because higher temperature gives particles more kinetic energy, increasing the number of effective collisions per second.
- (f) At 15°C, the time would increase further beyond 72 seconds, possibly above 90 seconds, because **lower temperatures slow down reaction rates** by reducing the frequency and energy of collisions.

3. You are given salt **Y**.

(i) Table of observations and inferences:

Test	Observation	Inference
Appearance	Blue crystalline solid	Likely copper salt
Heating	Water droplets on tube walls	Hydrated salt present
NaOH (few drops)	Pale blue precipitate	Cu ²⁺ present
NaOH (excess)	Precipitate remains	Confirms Cu ²⁺
Ammonia (few drops)	Light blue precipitate	Cu ²⁺ confirmed
Ammonia (excess)	Deep blue solution forms	Strong confirmation of Cu ²⁺
BaCl ₂ + HCl	White precipitate forms	SO ₄ ²⁻ present
AgNO ₃ + HNO ₃	No precipitate	No halides present

- (ii) The cation is Cu²⁺, the anion is SO₄²⁻. Salt Y is copper(II) sulfate pentahydrate (CuSO₄·5H₂O).
- (iii) Reaction with barium chloride:

$$CuSO_4(aq) + BaCl_2(aq) \rightarrow BaSO_4(s) + CuCl_2(aq)$$

(iv) Distinguishing property:

The deep blue complex formed with excess ammonia is characteristic of transition metal (Cu²⁺) coordination chemistry.