THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA DIPLOMA IN SECONDARY EDUCATION EXAMINATION

732/2B CHEMISTRY 2B

(ACTUAL PRACTICAL B)

Time: 3 Hours ANSWERS Year: 2017

Instructions.

- 1. This paper consists of three (3) questions.
- 2. Answer all questions
- 3. Question number 1 carries 20 marks and the rest carry 30 marks.
- 4. Cellular phones are **note** allowed in the examination room.
- 5. Write your **examination Number** on every page of your answer booklet(s).

1. You are provided with:

Q1: Sulfuric acid, 0.05 mol/dm³

Q2: Sodium hydroxide, 2.00 g in 500 cm³

Phenolphthalein indicator

- (a) The colour change observed during titration is **pink to colourless**. Phenolphthalein is pink in basic solution and becomes colourless when the acid neutralizes the base.
- (b) Balanced chemical equation:

$$2NaOH (aq) + H_2SO_4 (aq) \rightarrow Na_2SO_4 (aq) + 2H_2O (l)$$

(c) Molar mass of NaOH = 40 g/mol

Moles of NaOH in 2.00 g = $2.00 \div 40 = 0.05$ mol

Volume of solution = $500 \text{ cm}^3 = 0.5 \text{ dm}^3$

Concentration = $0.05 \div 0.5 = 0.1 \text{ mol/dm}^3$

Moles in 25.0 cm³ = $0.1 \times 25 \div 1000 = 0.0025$ mol

(d) From the balanced equation:

2 mol NaOH react with 1 mol H₂SO₄

So, moles of $H_2SO_4 = 0.0025 \div 2 = 0.00125$ mol

Volume of Q1 = $0.00125 \text{ mol} \div 0.05 \text{ mol/dm}^3 = 0.025 \text{ dm}^3 = 25.0 \text{ cm}^3$

- (e) Average titre = 25.0 cm³ (as assumed)
- (f) The calculated titre is consistent with the molar ratio and known concentrations, confirming that the solution Q1 has a concentration of 0.05 mol/dm³. The results are valid and consistent.
- 2. You are given:

R1: sodium thiosulphate

R2: hydrochloric acid

- (a) The mark "X" disappears because the reaction produces **sulfur**, which forms a **cloudy precipitate** that obscures the mark.
- (b) Completed table:

Exp	R1 (cm ³)	Water (cm³)	R2 (cm ³)	Time (s)
1	10	0	10	20
2	8	2	10	27

3	6	4	10	36
4	4	6	10	52
5	2	8	10	74

(c)

Balanced chemical equation:

$$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l) + SO_2(g) + S(s)$$

Ionic equation:

$$S_2O_3^{2-}$$
 (aq) + 2H⁺ (aq) \rightarrow SO₂ (g) + S (s) + H₂O (l)

- (d) As the concentration of R1 decreases (more water is added), the **rate of reaction decreases**. This is evident from the **increased time** it takes for the mark to disappear. A more concentrated solution leads to more frequent and effective collisions.
- (e) Apart from increasing concentration, **increasing temperature** can also speed up the reaction by giving particles more kinetic energy and increasing the frequency of collisions.
- **3.** You are given salt **M**, suspected to be an iron compound.
- (i) Table of observations and inferences:

Test	Observation	Inference
Appearance	Green crystalline solid	Likely Fe ²⁺ salt
Heating	Turns brown, gas	Oxidation to Fe ³⁺ , possible water
	evolved	loss
NaOH (few drops)	Green precipitate	Fe ²⁺ present
NaOH (excess)	No change	Fe(OH) ₂ is insoluble
Ammonia (few drops)	Green precipitate	Confirms Fe ²⁺
Ammonia (excess)	No change	Confirms Fe ²⁺
K ₄ [Fe(CN) ₆] after	Blue-green precipitate	Confirms Fe ²⁺
acidifying		
AgNO ₃ + HNO ₃	No precipitate	No halide present

(ii) The cation is Fe^{2+} , and since there's no white precipitate with BaCl₂ and HCl or AgNO₃, the anion is likely SO_4^{2-} . Therefore, salt M is **iron(II) sulfate (FeSO₄)**.

$$Fe^{2+}$$
 (aq) + 2OH⁻ (aq) \rightarrow Fe(OH)₂ (s)

$$Fe^{2+}$$
 (aq) + $[Fe(CN)_6]^{4-}$ (aq) \rightarrow $Fe_2[Fe(CN)_6]$ (s) (blue-green precipitate)

- (iv) To distinguish Fe²⁺ from Fe³⁺:
- Fe²⁺ forms a green precipitate with NaOH
- Fe³⁺ forms a **reddish-brown precipitate** with NaOH

Fe²⁺ gives a **blue-green** colour with potassium hexacyanoferrate(II), while Fe³⁺ gives a **deep blue**

(Prussian blue) with potassium hexacyanoferrate(III)